哈拉技术报告:大规模构建以阿拉伯语为中心的指令与翻译模型
Hala Technical Report: Building Arabic-Centric Instruction & Translation Models at Scale
September 17, 2025
作者: Hasan Abed Al Kader Hammoud, Mohammad Zbeeb, Bernard Ghanem
cs.AI
摘要
我们推出了Hala系列,这是一组以阿拉伯语为核心的指令与翻译模型,采用我们独特的翻译调优流程构建。首先,我们将一个强大的阿拉伯语-英语双向教师模型压缩至FP8精度(实现约两倍的吞吐量提升且无质量损失),并利用其生成高保真的双语监督数据。随后,一个轻量级语言模型LFM2-1.2B在此数据上进行微调,用于将高质量的英文指令集翻译成阿拉伯语,从而生成一个百万量级、专为指令跟随定制的语料库。我们训练了参数规模分别为350M、700M、1.2B和9B的Hala模型,并应用球面线性插值(slerp)融合技术,以平衡阿拉伯语特性与基础模型优势。在以阿拉伯语为核心的基准测试中,Hala在“纳米级”(≤2B)和“小型”(7-9B)类别中均取得了最先进的成果,超越了其基础模型。我们公开了模型、数据、评估方法及训练配方,以加速阿拉伯语自然语言处理领域的研究进展。
English
We present Hala, a family of Arabic-centric instruction and translation
models built with our translate-and-tune pipeline. We first compress a strong
ARleftrightarrowEN teacher to FP8 (yielding sim2times higher
throughput with no quality loss) and use it to create high-fidelity bilingual
supervision. A lightweight language model LFM2-1.2B is then fine-tuned on this
data and used to translate high-quality English instruction sets into Arabic,
producing a million-scale corpus tailored to instruction following. We train
Hala models at 350M, 700M, 1.2B, and 9B parameters, and apply slerp merging to
balance Arabic specialization with base-model strengths. On Arabic-centric
benchmarks, Hala achieves state-of-the-art results within both the "nano"
(leq2B) and "small" (7-9B) categories, outperforming their bases. We release
models, data, evaluation, and recipes to accelerate research in Arabic NLP.