Promptomatix:面向大语言模型的自动提示优化框架
Promptomatix: An Automatic Prompt Optimization Framework for Large Language Models
July 17, 2025
作者: Rithesh Murthy, Ming Zhu, Liangwei Yang, Jielin Qiu, Juntao Tan, Shelby Heinecke, Caiming Xiong, Silvio Savarese, Huan Wang
cs.AI
摘要
大型语言模型(LLMs)在精心设计的提示下表现最佳,然而提示工程仍然依赖手动操作,缺乏一致性,且对非专家用户不够友好。我们推出了Promptomatix,一个自动提示优化框架,能够将自然语言任务描述转化为高质量提示,无需手动调整或领域专业知识。Promptomatix支持基于轻量级元提示的优化器和DSPy驱动的编译器,其模块化设计便于未来扩展至更先进的框架。该系统通过分析用户意图、生成合成训练数据、选择提示策略,并利用成本感知目标优化提示。在五大任务类别上的评估显示,Promptomatix相较于现有库实现了竞争性或更优的性能,同时减少了提示长度和计算开销,使提示优化更具可扩展性和效率。
English
Large Language Models (LLMs) perform best with well-crafted prompts, yet
prompt engineering remains manual, inconsistent, and inaccessible to
non-experts. We introduce Promptomatix, an automatic prompt optimization
framework that transforms natural language task descriptions into high-quality
prompts without requiring manual tuning or domain expertise. Promptomatix
supports both a lightweight meta-prompt-based optimizer and a DSPy-powered
compiler, with modular design enabling future extension to more advanced
frameworks. The system analyzes user intent, generates synthetic training data,
selects prompting strategies, and refines prompts using cost-aware objectives.
Evaluated across 5 task categories, Promptomatix achieves competitive or
superior performance compared to existing libraries, while reducing prompt
length and computational overhead making prompt optimization scalable and
efficient.