通过基于事实的归因和学习拒绝来衡量和增强RAG中LLMs的可信度。
Measuring and Enhancing Trustworthiness of LLMs in RAG through Grounded Attributions and Learning to Refuse
September 17, 2024
作者: Maojia Song, Shang Hong Sim, Rishabh Bhardwaj, Hai Leong Chieu, Navonil Majumder, Soujanya Poria
cs.AI
摘要
LLM是检索增强生成(RAG)系统中不可或缺的一部分。虽然许多研究侧重于评估端到端RAG系统的质量,但对LLM在RAG任务中的适用性缺乏研究。因此,我们引入了一个新的度量标准,Trust-Score,提供了对LLM在RAG框架中可信度的全面评估。我们展示了各种提示方法,如上下文学习,未能有效地使LLM适应RAG任务。因此,我们提出了Trust-Align,一个用于使LLM对齐以获得更高Trust-Score的框架。与我们的方法对齐的LLaMA-3-8b,在ASQA(提高10.7)、QAMPARI(提高29.2)和ELI5(提高14.9)上显著优于开源具有相似规模的LLM。我们在以下网址发布了我们的代码:https://github.com/declare-lab/trust-align。
English
LLMs are an integral part of retrieval-augmented generation (RAG) systems.
While many studies focus on evaluating the quality of end-to-end RAG systems,
there is a lack of research on understanding the appropriateness of an LLM for
the RAG task. Thus, we introduce a new metric, Trust-Score, that provides a
holistic evaluation of the trustworthiness of LLMs in an RAG framework. We show
that various prompting methods, such as in-context learning, fail to adapt LLMs
effectively to the RAG task. Thus, we propose Trust-Align, a framework to align
LLMs for higher Trust-Score. LLaMA-3-8b, aligned with our method, significantly
outperforms open-source LLMs of comparable sizes on ASQA (up 10.7), QAMPARI (up
29.2) and ELI5 (up 14.9). We release our code at:
https://github.com/declare-lab/trust-align.Summary
AI-Generated Summary