ChatPaper.aiChatPaper

X-Part:高保真且结构一致的形状分解

X-Part: high fidelity and structure coherent shape decomposition

September 10, 2025
作者: Xinhao Yan, Jiachen Xu, Yang Li, Changfeng Ma, Yunhan Yang, Chunshi Wang, Zibo Zhao, Zeqiang Lai, Yunfei Zhao, Zhuo Chen, Chunchao Guo
cs.AI

摘要

在部件级别生成三维形状对于下游应用至关重要,如网格重拓扑、UV映射和3D打印。然而,现有的基于部件的生成方法往往缺乏足够的可控性,且语义分解效果不佳。为此,我们提出了X-Part,一种可控生成模型,旨在将整体三维对象分解为语义明确、结构连贯且几何保真度高的部件。X-Part利用边界框作为部件生成的提示,并注入点级语义特征以实现有意义的分解。此外,我们设计了一个可编辑的管道,用于交互式部件生成。大量实验结果表明,X-Part在部件级形状生成方面达到了最先进的性能。这项工作为创建生产就绪、可编辑且结构合理的3D资产建立了新范式。代码将公开发布以供研究使用。
English
Generating 3D shapes at part level is pivotal for downstream applications such as mesh retopology, UV mapping, and 3D printing. However, existing part-based generation methods often lack sufficient controllability and suffer from poor semantically meaningful decomposition. To this end, we introduce X-Part, a controllable generative model designed to decompose a holistic 3D object into semantically meaningful and structurally coherent parts with high geometric fidelity. X-Part exploits the bounding box as prompts for the part generation and injects point-wise semantic features for meaningful decomposition. Furthermore, we design an editable pipeline for interactive part generation. Extensive experimental results show that X-Part achieves state-of-the-art performance in part-level shape generation. This work establishes a new paradigm for creating production-ready, editable, and structurally sound 3D assets. Codes will be released for public research.
PDF233September 15, 2025