WebSailor:引领网络代理迈向超人类推理的航程
WebSailor: Navigating Super-human Reasoning for Web Agent
July 3, 2025
作者: Kuan Li, Zhongwang Zhang, Huifeng Yin, Liwen Zhang, Litu Ou, Jialong Wu, Wenbiao Yin, Baixuan Li, Zhengwei Tao, Xinyu Wang, Weizhou Shen, Junkai Zhang, Dingchu Zhang, Xixi Wu, Yong Jiang, Ming Yan, Pengjun Xie, Fei Huang, Jingren Zhou
cs.AI
摘要
超越人类认知局限是LLM训练中的一个关键前沿领域。诸如DeepResearch等专有代理系统已在BrowseComp等极其复杂的信息检索基准上展现出超人类能力,这一成就此前难以企及。我们认为,其成功关键在于开源模型所缺乏的一种高级推理模式:在浩瀚信息海洋中航行时,系统性地降低极端不确定性的能力。基于这一洞见,我们推出了WebSailor,一套完整的后训练方法论,旨在赋予模型这一关键能力。我们的方法通过结构化采样与信息遮蔽生成新颖的高不确定性任务,采用RFT冷启动,并引入高效的代理强化学习训练算法——复制采样策略优化(DUPO)。凭借这一集成流程,WebSailor在复杂信息检索任务中显著超越所有开源代理,与专有代理性能相当,缩小了能力差距。
English
Transcending human cognitive limitations represents a critical frontier in
LLM training. Proprietary agentic systems like DeepResearch have demonstrated
superhuman capabilities on extremely complex information-seeking benchmarks
such as BrowseComp, a feat previously unattainable. We posit that their success
hinges on a sophisticated reasoning pattern absent in open-source models: the
ability to systematically reduce extreme uncertainty when navigating vast
information landscapes. Based on this insight, we introduce WebSailor, a
complete post-training methodology designed to instill this crucial capability.
Our approach involves generating novel, high-uncertainty tasks through
structured sampling and information obfuscation, RFT cold start, and an
efficient agentic RL training algorithm, Duplicating Sampling Policy
Optimization (DUPO). With this integrated pipeline, WebSailor significantly
outperforms all opensource agents in complex information-seeking tasks,
matching proprietary agents' performance and closing the capability gap.