ChatPaper.aiChatPaper

VLAI:基于RoBERTa的自动化漏洞严重性分类模型

VLAI: A RoBERTa-Based Model for Automated Vulnerability Severity Classification

July 4, 2025
作者: Cédric Bonhomme, Alexandre Dulaunoy
cs.AI

摘要

本文介绍了VLAI,一种基于Transformer的模型,能够直接从文本描述中预测软件漏洞的严重程度等级。VLAI以RoBERTa为基础,通过对超过60万个真实世界漏洞进行微调,在预测严重性类别时准确率超过82%,从而在人工CVSS评分前实现更快、更一致的漏洞分类。该模型及数据集已开源,并集成至Vulnerability-Lookup服务中。
English
This paper presents VLAI, a transformer-based model that predicts software vulnerability severity levels directly from text descriptions. Built on RoBERTa, VLAI is fine-tuned on over 600,000 real-world vulnerabilities and achieves over 82% accuracy in predicting severity categories, enabling faster and more consistent triage ahead of manual CVSS scoring. The model and dataset are open-source and integrated into the Vulnerability-Lookup service.
PDF41July 8, 2025