SEACrowd:东南亚语言的多语言多模态数据中心和基准套件
SEACrowd: A Multilingual Multimodal Data Hub and Benchmark Suite for Southeast Asian Languages
June 14, 2024
作者: Holy Lovenia, Rahmad Mahendra, Salsabil Maulana Akbar, Lester James V. Miranda, Jennifer Santoso, Elyanah Aco, Akhdan Fadhilah, Jonibek Mansurov, Joseph Marvin Imperial, Onno P. Kampman, Joel Ruben Antony Moniz, Muhammad Ravi Shulthan Habibi, Frederikus Hudi, Railey Montalan, Ryan Ignatius, Joanito Agili Lopo, William Nixon, Börje F. Karlsson, James Jaya, Ryandito Diandaru, Yuze Gao, Patrick Amadeus, Bin Wang, Jan Christian Blaise Cruz, Chenxi Whitehouse, Ivan Halim Parmonangan, Maria Khelli, Wenyu Zhang, Lucky Susanto, Reynard Adha Ryanda, Sonny Lazuardi Hermawan, Dan John Velasco, Muhammad Dehan Al Kautsar, Willy Fitra Hendria, Yasmin Moslem, Noah Flynn, Muhammad Farid Adilazuarda, Haochen Li, Johanes Lee, R. Damanhuri, Shuo Sun, Muhammad Reza Qorib, Amirbek Djanibekov, Wei Qi Leong, Quyet V. Do, Niklas Muennighoff, Tanrada Pansuwan, Ilham Firdausi Putra, Yan Xu, Ngee Chia Tai, Ayu Purwarianti, Sebastian Ruder, William Tjhi, Peerat Limkonchotiwat, Alham Fikri Aji, Sedrick Keh, Genta Indra Winata, Ruochen Zhang, Fajri Koto, Zheng-Xin Yong, Samuel Cahyawijaya
cs.AI
摘要
东南亚(SEA)是一个语言多样性和文化多样性丰富的地区,拥有超过1,300种土著语言和6.71亿人口。然而,目前的人工智能模型在东南亚地区的文本、图像和音频数据集方面存在严重的代表性不足,影响了用于东南亚语言的人工智能模型的质量。由于高质量数据集的稀缺性,再加上英语训练数据的主导地位,评估东南亚语言的模型具有挑战性,引发了潜在的文化误代表的担忧。为了解决这些挑战,我们推出了SEACrowd,这是一个协作倡议,整合了一个全面的资源中心,通过提供近1,000种东南亚语言的标准语料库,填补了资源空缺。通过我们的SEACrowd基准测试,我们评估了36种土著语言在13项任务上的人工智能模型质量,为了解东南亚当前人工智能格局提供了宝贵的见解。此外,我们提出了促进更大人工智能进步的策略,最大限度地发挥东南亚地区人工智能未来的潜在效用和资源公平性。
English
Southeast Asia (SEA) is a region rich in linguistic diversity and cultural
variety, with over 1,300 indigenous languages and a population of 671 million
people. However, prevailing AI models suffer from a significant lack of
representation of texts, images, and audio datasets from SEA, compromising the
quality of AI models for SEA languages. Evaluating models for SEA languages is
challenging due to the scarcity of high-quality datasets, compounded by the
dominance of English training data, raising concerns about potential cultural
misrepresentation. To address these challenges, we introduce SEACrowd, a
collaborative initiative that consolidates a comprehensive resource hub that
fills the resource gap by providing standardized corpora in nearly 1,000 SEA
languages across three modalities. Through our SEACrowd benchmarks, we assess
the quality of AI models on 36 indigenous languages across 13 tasks, offering
valuable insights into the current AI landscape in SEA. Furthermore, we propose
strategies to facilitate greater AI advancements, maximizing potential utility
and resource equity for the future of AI in SEA.Summary
AI-Generated Summary