ChatPaper.aiChatPaper

T2R-bench:一个从现实工业表格生成文章级报告的基准测试平台

T2R-bench: A Benchmark for Generating Article-Level Reports from Real World Industrial Tables

August 27, 2025
作者: Jie Zhang, Changzai Pan, Kaiwen Wei, Sishi Xiong, Yu Zhao, Xiangyu Li, Jiaxin Peng, Xiaoyan Gu, Jian Yang, Wenhan Chang, Zhenhe Wu, Jiang Zhong, Shuangyong Song, Yongxiang Li, Xuelong Li
cs.AI

摘要

大量研究已深入探讨了大语言模型(LLMs)在表格推理方面的能力。然而,将表格信息转化为报告这一核心任务,在工业应用中仍面临重大挑战。该任务主要受限于两大关键问题:1)表格的复杂性和多样性导致推理结果不尽如人意;2)现有的表格基准测试缺乏充分评估该任务实际应用的能力。为填补这一空白,我们提出了表格到报告(table-to-report)任务,并构建了一个名为T2R-bench的双语基准测试,其中关键信息从表格流向报告。该基准包含457个工业表格,均源自真实场景,涵盖19个行业领域及4种工业表格类型。此外,我们提出了一套评估标准,以公正衡量报告生成的质量。对25种广泛使用的LLMs进行的实验显示,即便是如Deepseek-R1这样的顶尖模型,其整体得分也仅为62.71,表明LLMs在T2R-bench上仍有提升空间。源代码与数据将在论文被接受后公开。
English
Extensive research has been conducted to explore the capabilities of large language models (LLMs) in table reasoning. However, the essential task of transforming tables information into reports remains a significant challenge for industrial applications. This task is plagued by two critical issues: 1) the complexity and diversity of tables lead to suboptimal reasoning outcomes; and 2) existing table benchmarks lack the capacity to adequately assess the practical application of this task. To fill this gap, we propose the table-to-report task and construct a bilingual benchmark named T2R-bench, where the key information flow from the tables to the reports for this task. The benchmark comprises 457 industrial tables, all derived from real-world scenarios and encompassing 19 industry domains as well as 4 types of industrial tables. Furthermore, we propose an evaluation criteria to fairly measure the quality of report generation. The experiments on 25 widely-used LLMs reveal that even state-of-the-art models like Deepseek-R1 only achieves performance with 62.71 overall score, indicating that LLMs still have room for improvement on T2R-bench. Source code and data will be available after acceptance.
PDF202September 2, 2025