DynaMo:面向视觉-运动控制的领域内动态预训练
DynaMo: In-Domain Dynamics Pretraining for Visuo-Motor Control
September 18, 2024
作者: Zichen Jeff Cui, Hengkai Pan, Aadhithya Iyer, Siddhant Haldar, Lerrel Pinto
cs.AI
摘要
模仿学习已被证明是训练复杂视觉动作策略的强大工具。然而,目前的方法通常需要数百到数千个专家演示来处理高维视觉观测。造成这种数据效率低的一个关键原因是,视觉表示主要是预训练在域外数据上或直接通过行为克隆目标进行训练。在这项工作中,我们提出了DynaMo,一种新的域内自监督学习视觉表示方法。给定一组专家演示,我们共同学习一个潜在的逆动力学模型和一个正向动力学模型,通过一系列图像嵌入来预测潜在空间中的下一帧,无需增强、对比采样或访问地面真实动作。重要的是,DynaMo 不需要任何域外数据,如互联网数据集或跨体数据集。在六个模拟和真实环境套件中,我们展示了使用DynaMo学习的表示显著改善了先前自监督学习目标和预训练表示的下游模仿学习性能。使用DynaMo获得的收益在行为变换器、扩散策略、MLP 和最近邻等策略类别中都适用。最后,我们对DynaMo的关键组件进行了消融实验,并测量其对下游策略性能的影响。机器人视频最佳观看网址为 https://dynamo-ssl.github.io
English
Imitation learning has proven to be a powerful tool for training complex
visuomotor policies. However, current methods often require hundreds to
thousands of expert demonstrations to handle high-dimensional visual
observations. A key reason for this poor data efficiency is that visual
representations are predominantly either pretrained on out-of-domain data or
trained directly through a behavior cloning objective. In this work, we present
DynaMo, a new in-domain, self-supervised method for learning visual
representations. Given a set of expert demonstrations, we jointly learn a
latent inverse dynamics model and a forward dynamics model over a sequence of
image embeddings, predicting the next frame in latent space, without
augmentations, contrastive sampling, or access to ground truth actions.
Importantly, DynaMo does not require any out-of-domain data such as Internet
datasets or cross-embodied datasets. On a suite of six simulated and real
environments, we show that representations learned with DynaMo significantly
improve downstream imitation learning performance over prior self-supervised
learning objectives, and pretrained representations. Gains from using DynaMo
hold across policy classes such as Behavior Transformer, Diffusion Policy, MLP,
and nearest neighbors. Finally, we ablate over key components of DynaMo and
measure its impact on downstream policy performance. Robot videos are best
viewed at https://dynamo-ssl.github.ioSummary
AI-Generated Summary