ChatPaper.aiChatPaper

**Llama-3.1-FoundationAI-SecurityLLM-Reasoning-8B 技术报告**

Llama-3.1-FoundationAI-SecurityLLM-Reasoning-8B Technical Report

January 28, 2026
作者: Zhuoran Yang, Ed Li, Jianliang He, Aman Priyanshu, Baturay Saglam, Paul Kassianik, Sajana Weerawardhena, Anu Vellore, Blaine Nelson, Neusha Javidnia, Arthur Goldblatt, Fraser Burch, Avi Zohary, Assaf Eisenman, Mahdi Sabbaghi, Supriti Vijay, Rahim Dharssi, Dhruv Kedia, Kojin Oshiba, Yaron Singer, Amin Karbasi
cs.AI

摘要

我们正式发布Foundation-Sec-8B-Reasoning——首个面向网络安全领域的开源原生推理模型。该模型基于我们此前开源的Foundation-Sec-8B基础模型(源自Llama-3.1-8B-Base),通过监督微调(SFT)与可验证奖励强化学习(RLVR)两阶段训练流程构建。训练过程采用涵盖网络安全分析、指令遵循和数学推理的专有推理数据集。在10项网络安全基准测试和10项通用基准测试中的评估表明,该模型在网络安全任务上达到与参数量更大模型相媲美的性能,同时保持强大的通用能力。模型在多跳推理任务中展现出有效的泛化能力,在配合适当系统提示与防护机制部署时具有优异的安全表现。本研究表明,领域专用推理模型能够在保持广泛通用能力的同时,在专业任务中实现卓越性能。模型已公开发布于:https://huggingface.co/fdtn-ai/Foundation-Sec-8B-Reasoning。
English
We present Foundation-Sec-8B-Reasoning, the first open-source native reasoning model for cybersecurity. Built upon our previously released Foundation-Sec-8B base model (derived from Llama-3.1-8B-Base), the model is trained through a two-stage process combining supervised fine-tuning (SFT) and reinforcement learning from verifiable rewards (RLVR). Our training leverages proprietary reasoning data spanning cybersecurity analysis, instruction-following, and mathematical reasoning. Evaluation across 10 cybersecurity benchmarks and 10 general-purpose benchmarks demonstrates performance competitive with significantly larger models on cybersecurity tasks while maintaining strong general capabilities. The model shows effective generalization on multi-hop reasoning tasks and strong safety performance when deployed with appropriate system prompts and guardrails. This work demonstrates that domain-specialized reasoning models can achieve strong performance on specialized tasks while maintaining broad general capabilities. We release the model publicly at https://huggingface.co/fdtn-ai/Foundation-Sec-8B-Reasoning.
PDF83January 31, 2026