xGen-MM-Vid(BLIP-3-Video):您只需32个标记即可在VLM中表示一个视频
xGen-MM-Vid (BLIP-3-Video): You Only Need 32 Tokens to Represent a Video Even in VLMs
October 21, 2024
作者: Michael S. Ryoo, Honglu Zhou, Shrikant Kendre, Can Qin, Le Xue, Manli Shu, Silvio Savarese, Ran Xu, Caiming Xiong, Juan Carlos Niebles
cs.AI
摘要
我们提出了xGen-MM-Vid(BLIP-3-Video):一种用于视频的多模态语言模型,特别设计用于高效地捕获多帧的时间信息。BLIP-3-Video利用了“时间编码器”,除了传统的视觉标记器外,还将多帧的标记序列映射为紧凑的视觉标记集。这使得BLIP3-Video可以使用比竞争模型(例如32对4608个标记)少得多的视觉标记。我们探讨了不同类型的时间编码器,包括可学习的时空池化以及像Token Turing Machines这样的顺序模型。实验证实,BLIP-3-Video获得了视频问答准确度,与更大型的最先进模型(例如34B)相当,同时体积更小(即4B),并通过使用更少的视觉标记更高效。该项目网站位于https://www.salesforceairesearch.com/opensource/xGen-MM-Vid/index.html
English
We present xGen-MM-Vid (BLIP-3-Video): a multimodal language model for
videos, particularly designed to efficiently capture temporal information over
multiple frames. BLIP-3-Video takes advantage of the 'temporal encoder' in
addition to the conventional visual tokenizer, which maps a sequence of tokens
over multiple frames into a compact set of visual tokens. This enables
BLIP3-Video to use much fewer visual tokens than its competing models (e.g., 32
vs. 4608 tokens). We explore different types of temporal encoders, including
learnable spatio-temporal pooling as well as sequential models like Token
Turing Machines. We experimentally confirm that BLIP-3-Video obtains video
question-answering accuracies comparable to much larger state-of-the-art models
(e.g., 34B), while being much smaller (i.e., 4B) and more efficient by using
fewer visual tokens. The project website is at
https://www.salesforceairesearch.com/opensource/xGen-MM-Vid/index.htmlSummary
AI-Generated Summary