Code4MeV2:面向研究的代码补全平台
Code4MeV2: a Research-oriented Code-completion Platform
October 4, 2025
作者: Roham Koohestani, Parham Bateni, Aydin Ebrahimi, Behdad Etezadi, Kiarash Karimi, Maliheh Izadi
cs.AI
摘要
在软件开发中,AI驱动的代码补全工具的应用已显著增加,然而这些系统产生的用户交互数据仍被大型企业所独占。这为学术界设置了障碍,因为研究人员往往需要开发专用平台来开展人机交互研究,使得可重复研究和大规模数据分析难以实现。针对这一局限,我们推出了Code4MeV2,一个面向研究的开源代码补全插件,专为JetBrains集成开发环境设计。Code4MeV2采用客户端-服务器架构,集成了行内代码补全和上下文感知的聊天助手功能。其核心贡献在于一个模块化且透明的数据收集框架,赋予研究人员对遥测和上下文收集的精细控制。在代码补全性能上,Code4MeV2达到了与业界相当的水平,平均延迟仅为200毫秒。我们通过专家评估和一项包含八名参与者的用户研究来评估该工具。来自研究人员和日常用户的反馈均强调了其信息丰富性和实用性。我们诚邀社区采纳并为此工具贡献力量。更多关于该工具的信息,请访问https://app.code4me.me。
English
The adoption of AI-powered code completion tools in software development has
increased substantially, yet the user interaction data produced by these
systems remain proprietary within large corporations. This creates a barrier
for the academic community, as researchers must often develop dedicated
platforms to conduct studies on human--AI interaction, making reproducible
research and large-scale data analysis impractical. In this work, we introduce
Code4MeV2, a research-oriented, open-source code completion plugin for
JetBrains IDEs, as a solution to this limitation. Code4MeV2 is designed using a
client--server architecture and features inline code completion and a
context-aware chat assistant. Its core contribution is a modular and
transparent data collection framework that gives researchers fine-grained
control over telemetry and context gathering. Code4MeV2 achieves
industry-comparable performance in terms of code completion, with an average
latency of 200~ms. We assess our tool through a combination of an expert
evaluation and a user study with eight participants. Feedback from both
researchers and daily users highlights its informativeness and usefulness. We
invite the community to adopt and contribute to this tool. More information
about the tool can be found at https://app.code4me.me.