ChatPaper.aiChatPaper

Agent0:通过工具集成推理实现从零数据中自我进化的智能体

Agent0: Unleashing Self-Evolving Agents from Zero Data via Tool-Integrated Reasoning

November 20, 2025
作者: Peng Xia, Kaide Zeng, Jiaqi Liu, Can Qin, Fang Wu, Yiyang Zhou, Caiming Xiong, Huaxiu Yao
cs.AI

摘要

大型语言模型(LLM)智能体通常通过强化学习进行训练,但其发展受限于对人类标注数据的依赖,这不仅制约了扩展性,还将人工智能束缚于人类知识范畴。现有自进化框架虽提供替代方案,但往往受限于模型固有能力和单轮交互机制,难以支撑涉及工具使用或动态推理的复杂课程学习。我们提出Agent0——一种完全自主的框架,通过多步协同进化与无缝工具集成,无需外部数据即可培育高性能智能体。该框架在源自同一基础LLM的两个智能体间建立共生竞争机制:课程智能体负责提出日益挑战性的前沿任务,执行智能体则学习解决这些任务。通过集成外部工具增强执行者的问题解决能力,这种提升反过来迫使课程智能体构建更复杂的工具感知任务。在此迭代过程中,Agent0形成了自我强化的循环,持续生成高质量课程体系。实验表明,Agent0显著提升推理能力,将Qwen3-8B-Base模型在数学推理和通用推理基准上的表现分别提升18%和24%。代码已开源:https://github.com/aiming-lab/Agent0。
English
Large Language Model (LLM) Agents, often trained with Reinforcement Learning (RL), are constrained by a dependency on human-curated data, limiting scalability and tethering AI to human knowledge. Existing self-evolution frameworks offer an alternative but are typically restricted by the model's inherent capabilities and single-round interactions, hindering the development of complex curricula involving tool use or dynamic reasoning. We introduce Agent0, a fully autonomous framework that evolves high-performing agents without external data through multi-step co-evolution and seamless tool integration. Agent0 establishes a symbiotic competition between two agents initialized from the same base LLM: a curriculum agent that proposes increasingly challenging frontier tasks, and an executor agent that learns to solve them. We integrate external tools to enhance the executor's problem-solving capacity; this improvement, in turn, pressures the curriculum agent to construct more complex, tool-aware tasks. Through this iterative process, Agent0 establishes a self-reinforcing cycle that continuously produces high-quality curricula. Empirically, Agent0 substantially boosts reasoning capabilities, improving the Qwen3-8B-Base model by 18% on mathematical reasoning and 24% on general reasoning benchmarks. Code is available at https://github.com/aiming-lab/Agent0.
PDF974December 1, 2025