从命令到提示:基于LLM的AIOS语义文件系统
From Commands to Prompts: LLM-based Semantic File System for AIOS
September 23, 2024
作者: Zeru Shi, Kai Mei, Mingyu Jin, Yongye Su, Chaoji Zuo, Wenyue Hua, Wujiang Xu, Yujie Ren, Zirui Liu, Mengnan Du, Dong Deng, Yongfeng Zhang
cs.AI
摘要
大型语言模型(LLMs)已经展示了在智能应用程序和系统的发展中具有重要潜力,例如基于LLM的代理和代理操作系统(AIOS)。然而,当这些应用程序和系统与底层文件系统交互时,文件系统仍然保持传统范式:依赖于通过精确命令手动导航。这种范式对这些系统的可用性构成瓶颈,因为用户需要浏览复杂的文件层次结构并记住晦涩的文件名。为了解决这一局限性,我们提出了基于LLM的语义文件系统(LSFS)用于基于提示的文件管理。与传统方法不同,LSFS整合了LLMs,使用户或代理能够通过自然语言提示与文件交互,促进语义文件管理。在宏观层面上,我们开发了一套全面的API集合,以实现语义文件管理功能,例如语义文件检索、文件更新监控和总结,以及语义文件回滚。在微观层面上,我们通过为文件构建语义索引来存储文件,设计和实现了不同语义操作的系统调用(例如CRUD、分组、连接),并由向量数据库提供支持。我们的实验表明,LSFS在用户便利性、支持功能的多样性以及文件操作的准确性和效率方面明显优于传统文件系统。此外,通过LLM的集成,我们的系统实现了更智能的文件管理任务,例如内容总结和版本比较,进一步增强了其功能。
English
Large language models (LLMs) have demonstrated significant potential in the
development of intelligent applications and systems such as LLM-based agents
and agent operating systems (AIOS). However, when these applications and
systems interact with the underlying file system, the file system still remains
the traditional paradigm: reliant on manual navigation through precise
commands. This paradigm poses a bottleneck to the usability of these systems as
users are required to navigate complex folder hierarchies and remember cryptic
file names. To address this limitation, we propose an LLM-based semantic file
system ( LSFS ) for prompt-driven file management. Unlike conventional
approaches, LSFS incorporates LLMs to enable users or agents to interact with
files through natural language prompts, facilitating semantic file management.
At the macro-level, we develop a comprehensive API set to achieve semantic file
management functionalities, such as semantic file retrieval, file update
monitoring and summarization, and semantic file rollback). At the micro-level,
we store files by constructing semantic indexes for them, design and implement
syscalls of different semantic operations (e.g., CRUD, group by, join) powered
by vector database. Our experiments show that LSFS offers significant
improvements over traditional file systems in terms of user convenience, the
diversity of supported functions, and the accuracy and efficiency of file
operations. Additionally, with the integration of LLM, our system enables more
intelligent file management tasks, such as content summarization and version
comparison, further enhancing its capabilities.Summary
AI-Generated Summary