DragAPart:为关节对象学习部件级运动先验
DragAPart: Learning a Part-Level Motion Prior for Articulated Objects
March 22, 2024
作者: Ruining Li, Chuanxia Zheng, Christian Rupprecht, Andrea Vedaldi
cs.AI
摘要
我们介绍了DragAPart,这是一种方法,给定一幅图像和一组拖动作为输入,可以生成一个新的图像,展示相同物体的新状态,与拖动的动作相兼容。与之前侧重于重新定位物体的作品不同,DragAPart预测部分级别的交互,比如打开和关闭抽屉。我们将这个问题作为学习通用运动模型的代理,不限于特定的运动结构或物体类别。为此,我们从一个预先训练好的图像生成器开始,并在一个新的合成数据集Drag-a-Move上进行微调,该数据集由我们引入。结合一种新的拖动编码和数据集随机化,新模型很好地推广到真实图像和不同类别。与之前的运动控制生成器相比,我们展示了更好的部分级别运动理解能力。
English
We introduce DragAPart, a method that, given an image and a set of drags as
input, can generate a new image of the same object in a new state, compatible
with the action of the drags. Differently from prior works that focused on
repositioning objects, DragAPart predicts part-level interactions, such as
opening and closing a drawer. We study this problem as a proxy for learning a
generalist motion model, not restricted to a specific kinematic structure or
object category. To this end, we start from a pre-trained image generator and
fine-tune it on a new synthetic dataset, Drag-a-Move, which we introduce.
Combined with a new encoding for the drags and dataset randomization, the new
model generalizes well to real images and different categories. Compared to
prior motion-controlled generators, we demonstrate much better part-level
motion understanding.Summary
AI-Generated Summary