InstantDrag:改善基于拖动的图像编辑中的交互性InstantDrag: Improving Interactivity in Drag-based Image Editing
基于拖动的图像编辑近来因其互动性和精度而备受青睐。然而,尽管文本到图像模型能够在一秒内生成样本,但由于准确反映用户交互并保持图像内容的挑战,拖动编辑仍然落后。一些现有方法依赖于计算密集型的每幅图像优化或复杂的基于引导的方法,需要额外的输入,如可移动区域的蒙版和文本提示,从而损害了编辑过程的互动性。我们引入InstantDrag,这是一个无需优化的流程,可增强互动性和速度,只需一张图像和一个拖动指令作为输入。InstantDrag包括两个精心设计的网络:一个拖动条件的光流生成器(FlowGen)和一个光流条件的扩散模型(FlowDiffusion)。InstantDrag通过将任务分解为运动生成和运动条件图像生成,从真实世界视频数据集中学习基于拖动的图像编辑的运动动态。我们通过对面部视频数据集和一般场景的实验展示了InstantDrag在没有蒙版或文本提示的情况下执行快速、逼真的编辑的能力。这些结果突显了我们方法在处理基于拖动的图像编辑方面的效率,使其成为互动、实时应用的一个有前途的解决方案。