NVIDIA Nemotron Nano V2 VL
NVIDIA Nemotron Nano V2 VL
November 6, 2025
papers.authors: NVIDIA, Amala Sanjay Deshmukh, Kateryna Chumachenko, Tuomas Rintamaki, Matthieu Le, Tyler Poon, Danial Mohseni Taheri, Ilia Karmanov, Guilin Liu, Jarno Seppanen, Guo Chen, Karan Sapra, Zhiding Yu, Adi Renduchintala, Charles Wang, Peter Jin, Arushi Goel, Mike Ranzinger, Lukas Voegtle, Philipp Fischer, Timo Roman, Wei Ping, Boxin Wang, Zhuolin Yang, Nayeon Lee, Shaokun Zhang, Fuxiao Liu, Zhiqi Li, Di Zhang, Greg Heinrich, Hongxu, Yin, Song Han, Pavlo Molchanov, Parth Mannan, Yao Xu, Jane Polak Scowcroft, Tom Balough, Subhashree Radhakrishnan, Paris Zhang, Sean Cha, Ratnesh Kumar, Zaid Pervaiz Bhat, Jian Zhang, Darragh Hanley, Pritam Biswas, Jesse Oliver, Kevin Vasques, Roger Waleffe, Duncan Riach, Oluwatobi Olabiyi, Ameya Sunil Mahabaleshwarkar, Bilal Kartal, Pritam Gundecha, Khanh Nguyen, Alexandre Milesi, Eugene Khvedchenia, Ran Zilberstein, Ofri Masad, Natan Bagrov, Nave Assaf, Tomer Asida, Daniel Afrimi, Amit Zuker, Netanel Haber, Zhiyu Cheng, Jingyu, Xin, Di, Wu, Nik Spirin, Maryam Moosaei, Roman Ageev, Vanshil Atul Shah, Yuting Wu, Daniel Korzekwa, Unnikrishnan Kizhakkemadam Sreekumar, Wanli Jiang, Padmavathy Subramanian, Alejandra Rico, Sandip Bhaskar, Saeid Motiian, Kedi Wu, Annie Surla, Chia-Chih Chen, Hayden Wolff, Matthew Feinberg, Melissa Corpuz, Marek Wawrzos, Eileen Long, Aastha Jhunjhunwala, Paul Hendricks, Farzan Memarian, Benika Hall, Xin-Yu Wang, David Mosallanezhad, Soumye Singhal, Luis Vega, Katherine Cheung, Krzysztof Pawelec, Michael Evans, Katherine Luna, Jie Lou, Erick Galinkin, Akshay Hazare, Kaustubh Purandare, Ann Guan, Anna Warno, Chen Cui, Yoshi Suhara, Shibani Likhite, Seph Mard, Meredith Price, Laya Sleiman, Saori Kaji, Udi Karpas, Kari Briski, Joey Conway, Michael Lightstone, Jan Kautz, Mohammad Shoeybi, Mostofa Patwary, Jonathen Cohen, Oleksii Kuchaiev, Andrew Tao, Bryan Catanzaro
cs.AI
papers.abstract
Wir stellen Nemotron Nano V2 VL vor, das neueste Modell der Nemotron-Vision-Language-Serie, das für ein robustes Verständnis realer Dokumente, Langzeit-Videoverständnis und Reasoning-Aufgaben konzipiert ist. Nemotron Nano V2 VL erzielt durch wesentliche Verbesserungen in der Modellarchitektur, den Datensätzen und den Trainingsrezepten signifikante Steigerungen gegenüber unserem vorherigen Modell, Llama-3.1-Nemotron-Nano-VL-8B, in allen Bild- und Textdomänen. Nemotron Nano V2 VL baut auf Nemotron Nano V2, einem hybriden Mamba-Transformer-LLM, und innovativen Token-Reduzierungstechniken auf, um einen höheren Inferenz-Durchsatz in Szenarien mit langen Dokumenten und Videos zu erreichen. Wir veröffentlichen Modell-Checkpoints in den Formaten BF16, FP8 und FP4 und stellen große Teile unserer Datensätze, Rezepte und Trainingscodes zur Verfügung.
English
We introduce Nemotron Nano V2 VL, the latest model of the Nemotron
vision-language series designed for strong real-world document understanding,
long video comprehension, and reasoning tasks. Nemotron Nano V2 VL delivers
significant improvements over our previous model,
Llama-3.1-Nemotron-Nano-VL-8B, across all vision and text domains through major
enhancements in model architecture, datasets, and training recipes. Nemotron
Nano V2 VL builds on Nemotron Nano V2, a hybrid Mamba-Transformer LLM, and
innovative token reduction techniques to achieve higher inference throughput in
long document and video scenarios. We are releasing model checkpoints in BF16,
FP8, and FP4 formats and sharing large parts of our datasets, recipes and
training code.