ChatPaper.aiChatPaper

NVIDIA Nemotron Nano V2 VL

NVIDIA Nemotron Nano V2 VL

November 6, 2025
papers.authors: NVIDIA, Amala Sanjay Deshmukh, Kateryna Chumachenko, Tuomas Rintamaki, Matthieu Le, Tyler Poon, Danial Mohseni Taheri, Ilia Karmanov, Guilin Liu, Jarno Seppanen, Guo Chen, Karan Sapra, Zhiding Yu, Adi Renduchintala, Charles Wang, Peter Jin, Arushi Goel, Mike Ranzinger, Lukas Voegtle, Philipp Fischer, Timo Roman, Wei Ping, Boxin Wang, Zhuolin Yang, Nayeon Lee, Shaokun Zhang, Fuxiao Liu, Zhiqi Li, Di Zhang, Greg Heinrich, Hongxu, Yin, Song Han, Pavlo Molchanov, Parth Mannan, Yao Xu, Jane Polak Scowcroft, Tom Balough, Subhashree Radhakrishnan, Paris Zhang, Sean Cha, Ratnesh Kumar, Zaid Pervaiz Bhat, Jian Zhang, Darragh Hanley, Pritam Biswas, Jesse Oliver, Kevin Vasques, Roger Waleffe, Duncan Riach, Oluwatobi Olabiyi, Ameya Sunil Mahabaleshwarkar, Bilal Kartal, Pritam Gundecha, Khanh Nguyen, Alexandre Milesi, Eugene Khvedchenia, Ran Zilberstein, Ofri Masad, Natan Bagrov, Nave Assaf, Tomer Asida, Daniel Afrimi, Amit Zuker, Netanel Haber, Zhiyu Cheng, Jingyu, Xin, Di, Wu, Nik Spirin, Maryam Moosaei, Roman Ageev, Vanshil Atul Shah, Yuting Wu, Daniel Korzekwa, Unnikrishnan Kizhakkemadam Sreekumar, Wanli Jiang, Padmavathy Subramanian, Alejandra Rico, Sandip Bhaskar, Saeid Motiian, Kedi Wu, Annie Surla, Chia-Chih Chen, Hayden Wolff, Matthew Feinberg, Melissa Corpuz, Marek Wawrzos, Eileen Long, Aastha Jhunjhunwala, Paul Hendricks, Farzan Memarian, Benika Hall, Xin-Yu Wang, David Mosallanezhad, Soumye Singhal, Luis Vega, Katherine Cheung, Krzysztof Pawelec, Michael Evans, Katherine Luna, Jie Lou, Erick Galinkin, Akshay Hazare, Kaustubh Purandare, Ann Guan, Anna Warno, Chen Cui, Yoshi Suhara, Shibani Likhite, Seph Mard, Meredith Price, Laya Sleiman, Saori Kaji, Udi Karpas, Kari Briski, Joey Conway, Michael Lightstone, Jan Kautz, Mohammad Shoeybi, Mostofa Patwary, Jonathen Cohen, Oleksii Kuchaiev, Andrew Tao, Bryan Catanzaro
cs.AI

papers.abstract

Nous présentons Nemotron Nano V2 VL, le dernier modèle de la série vision-langage Nemotron, conçu pour une compréhension robuste des documents du monde réel, une compréhension vidéo longue et des tâches de raisonnement. Nemotron Nano V2 VL offre des améliorations significatives par rapport à notre modèle précédent, Llama-3.1-Nemotron-Nano-VL-8B, dans tous les domaines visuels et textuels, grâce à des améliorations majeures de l'architecture du modèle, des jeux de données et des méthodes d'entraînement. Nemotron Nano V2 VL s'appuie sur Nemotron Nano V2, un LLM hybride de type Mamba-Transformer, et sur des techniques innovantes de réduction de tokens pour atteindre un débit d'inférence supérieur dans les scénarios de documents longs et de vidéos. Nous publions les points de contrôle du modèle aux formats BF16, FP8 et FP4, et partageons une grande partie de nos jeux de données, de nos méthodes et de notre code d'entraînement.
English
We introduce Nemotron Nano V2 VL, the latest model of the Nemotron vision-language series designed for strong real-world document understanding, long video comprehension, and reasoning tasks. Nemotron Nano V2 VL delivers significant improvements over our previous model, Llama-3.1-Nemotron-Nano-VL-8B, across all vision and text domains through major enhancements in model architecture, datasets, and training recipes. Nemotron Nano V2 VL builds on Nemotron Nano V2, a hybrid Mamba-Transformer LLM, and innovative token reduction techniques to achieve higher inference throughput in long document and video scenarios. We are releasing model checkpoints in BF16, FP8, and FP4 formats and sharing large parts of our datasets, recipes and training code.
PDF262December 2, 2025