NVIDIA Nemotron Nano V2 視覺語言模型
NVIDIA Nemotron Nano V2 VL
November 6, 2025
作者: NVIDIA, Amala Sanjay Deshmukh, Kateryna Chumachenko, Tuomas Rintamaki, Matthieu Le, Tyler Poon, Danial Mohseni Taheri, Ilia Karmanov, Guilin Liu, Jarno Seppanen, Guo Chen, Karan Sapra, Zhiding Yu, Adi Renduchintala, Charles Wang, Peter Jin, Arushi Goel, Mike Ranzinger, Lukas Voegtle, Philipp Fischer, Timo Roman, Wei Ping, Boxin Wang, Zhuolin Yang, Nayeon Lee, Shaokun Zhang, Fuxiao Liu, Zhiqi Li, Di Zhang, Greg Heinrich, Hongxu, Yin, Song Han, Pavlo Molchanov, Parth Mannan, Yao Xu, Jane Polak Scowcroft, Tom Balough, Subhashree Radhakrishnan, Paris Zhang, Sean Cha, Ratnesh Kumar, Zaid Pervaiz Bhat, Jian Zhang, Darragh Hanley, Pritam Biswas, Jesse Oliver, Kevin Vasques, Roger Waleffe, Duncan Riach, Oluwatobi Olabiyi, Ameya Sunil Mahabaleshwarkar, Bilal Kartal, Pritam Gundecha, Khanh Nguyen, Alexandre Milesi, Eugene Khvedchenia, Ran Zilberstein, Ofri Masad, Natan Bagrov, Nave Assaf, Tomer Asida, Daniel Afrimi, Amit Zuker, Netanel Haber, Zhiyu Cheng, Jingyu, Xin, Di, Wu, Nik Spirin, Maryam Moosaei, Roman Ageev, Vanshil Atul Shah, Yuting Wu, Daniel Korzekwa, Unnikrishnan Kizhakkemadam Sreekumar, Wanli Jiang, Padmavathy Subramanian, Alejandra Rico, Sandip Bhaskar, Saeid Motiian, Kedi Wu, Annie Surla, Chia-Chih Chen, Hayden Wolff, Matthew Feinberg, Melissa Corpuz, Marek Wawrzos, Eileen Long, Aastha Jhunjhunwala, Paul Hendricks, Farzan Memarian, Benika Hall, Xin-Yu Wang, David Mosallanezhad, Soumye Singhal, Luis Vega, Katherine Cheung, Krzysztof Pawelec, Michael Evans, Katherine Luna, Jie Lou, Erick Galinkin, Akshay Hazare, Kaustubh Purandare, Ann Guan, Anna Warno, Chen Cui, Yoshi Suhara, Shibani Likhite, Seph Mard, Meredith Price, Laya Sleiman, Saori Kaji, Udi Karpas, Kari Briski, Joey Conway, Michael Lightstone, Jan Kautz, Mohammad Shoeybi, Mostofa Patwary, Jonathen Cohen, Oleksii Kuchaiev, Andrew Tao, Bryan Catanzaro
cs.AI
摘要
我們推出 Nemotron Nano V2 VL,這是 Nemotron 視覺語言系列的最新模型,專為強大的真實世界文件理解、長影片理解與推理任務而設計。透過模型架構、資料集與訓練方法的重大改進,Nemotron Nano V2 VL 在視覺與文字領域均較前代模型 Llama-3.1-Nemotron-Nano-VL-8B 實現顯著提升。本模型基於混合 Mamba-Transformer 架構的大型語言模型 Nemotron Nano V2,並結合創新的標記縮減技術,在長文件與長影片場景中實現更高的推理吞吐量。我們將發布 BF16、FP8 與 FP4 格式的模型檢查點,並開放大規模資料集、訓練方法與程式碼。
English
We introduce Nemotron Nano V2 VL, the latest model of the Nemotron
vision-language series designed for strong real-world document understanding,
long video comprehension, and reasoning tasks. Nemotron Nano V2 VL delivers
significant improvements over our previous model,
Llama-3.1-Nemotron-Nano-VL-8B, across all vision and text domains through major
enhancements in model architecture, datasets, and training recipes. Nemotron
Nano V2 VL builds on Nemotron Nano V2, a hybrid Mamba-Transformer LLM, and
innovative token reduction techniques to achieve higher inference throughput in
long document and video scenarios. We are releasing model checkpoints in BF16,
FP8, and FP4 formats and sharing large parts of our datasets, recipes and
training code.