PosterCraft:在統一框架下重新思考高品質美學海報生成
PosterCraft: Rethinking High-Quality Aesthetic Poster Generation in a Unified Framework
June 12, 2025
作者: SiXiang Chen, Jianyu Lai, Jialin Gao, Tian Ye, Haoyu Chen, Hengyu Shi, Shitong Shao, Yunlong Lin, Song Fei, Zhaohu Xing, Yeying Jin, Junfeng Luo, Xiaoming Wei, Lei Zhu
cs.AI
摘要
生成美觀的海報比簡單的設計圖像更具挑戰性:
它不僅需要精確的文字渲染,還需要無縫整合
抽象的藝術內容、引人注目的佈局以及整體的風格和諧。
為此,我們提出了PosterCraft,這是一個統一的框架,摒棄了
先前的模組化流程和僵化的預定義佈局,使模型能夠
自由探索連貫且視覺上引人入勝的構圖。PosterCraft採用
精心設計的級聯工作流程來優化
高美感海報的生成:(i) 在我們新引入的Text-Render-2M數據集上進行大規模文字渲染優化;
(ii) 在HQ-Poster100K上進行區域感知的監督微調;
(iii) 通過最佳-n偏好優化進行美學文字強化學習;
(iv) 聯合視覺-語言反饋精煉。每個階段都得到了一個完全自動化的數據構建流程的支持,
該流程根據其特定需求進行了定制,從而實現了無需複雜架構修改的穩健訓練。
在多項實驗中進行評估後,PosterCraft在渲染
準確性、佈局連貫性和整體視覺吸引力方面顯著優於開源基準,接近
SOTA商業系統的質量。我們的代碼、模型和數據集可以在項目頁面找到:
https://ephemeral182.github.io/PosterCraft
English
Generating aesthetic posters is more challenging than simple design images:
it requires not only precise text rendering but also the seamless integration
of abstract artistic content, striking layouts, and overall stylistic harmony.
To address this, we propose PosterCraft, a unified framework that abandons
prior modular pipelines and rigid, predefined layouts, allowing the model to
freely explore coherent, visually compelling compositions. PosterCraft employs
a carefully designed, cascaded workflow to optimize the generation of
high-aesthetic posters: (i) large-scale text-rendering optimization on our
newly introduced Text-Render-2M dataset; (ii) region-aware supervised
fine-tuning on HQ-Poster100K; (iii) aesthetic-text-reinforcement learning via
best-of-n preference optimization; and (iv) joint vision-language feedback
refinement. Each stage is supported by a fully automated data-construction
pipeline tailored to its specific needs, enabling robust training without
complex architectural modifications. Evaluated on multiple experiments,
PosterCraft significantly outperforms open-source baselines in rendering
accuracy, layout coherence, and overall visual appeal-approaching the quality
of SOTA commercial systems. Our code, models, and datasets can be found in the
Project page: https://ephemeral182.github.io/PosterCraft