ChatPaper.aiChatPaper

PosterCraft:在统一框架下重新思考高质量美学海报生成

PosterCraft: Rethinking High-Quality Aesthetic Poster Generation in a Unified Framework

June 12, 2025
作者: SiXiang Chen, Jianyu Lai, Jialin Gao, Tian Ye, Haoyu Chen, Hengyu Shi, Shitong Shao, Yunlong Lin, Song Fei, Zhaohu Xing, Yeying Jin, Junfeng Luo, Xiaoming Wei, Lei Zhu
cs.AI

摘要

生成具有美感的海报比简单的设计图像更具挑战性: 它不仅需要精确的文本渲染,还要求将抽象的艺术内容、引人注目的布局与整体风格和谐地融为一体。为此,我们提出了PosterCraft,一个统一框架,摒弃了以往模块化的流程和僵化的预设布局,让模型能够自由探索连贯且视觉吸引力强的构图。PosterCraft采用精心设计的级联工作流,以优化高质量美感海报的生成:(i) 在我们新引入的Text-Render-2M数据集上进行大规模文本渲染优化;(ii) 在HQ-Poster100K上进行区域感知的监督微调;(iii) 通过最佳n项偏好优化实现美感文本强化学习;(iv) 结合视觉-语言反馈进行联合精炼。每个阶段都配备了一个完全自动化的数据构建流程,针对其特定需求定制,无需复杂的架构修改即可实现稳健训练。通过多项实验评估,PosterCraft在渲染准确性、布局连贯性和整体视觉吸引力方面显著超越了开源基线,接近了SOTA商业系统的水平。我们的代码、模型和数据集可在项目页面找到:https://ephemeral182.github.io/PosterCraft。
English
Generating aesthetic posters is more challenging than simple design images: it requires not only precise text rendering but also the seamless integration of abstract artistic content, striking layouts, and overall stylistic harmony. To address this, we propose PosterCraft, a unified framework that abandons prior modular pipelines and rigid, predefined layouts, allowing the model to freely explore coherent, visually compelling compositions. PosterCraft employs a carefully designed, cascaded workflow to optimize the generation of high-aesthetic posters: (i) large-scale text-rendering optimization on our newly introduced Text-Render-2M dataset; (ii) region-aware supervised fine-tuning on HQ-Poster100K; (iii) aesthetic-text-reinforcement learning via best-of-n preference optimization; and (iv) joint vision-language feedback refinement. Each stage is supported by a fully automated data-construction pipeline tailored to its specific needs, enabling robust training without complex architectural modifications. Evaluated on multiple experiments, PosterCraft significantly outperforms open-source baselines in rendering accuracy, layout coherence, and overall visual appeal-approaching the quality of SOTA commercial systems. Our code, models, and datasets can be found in the Project page: https://ephemeral182.github.io/PosterCraft
PDF173June 13, 2025