計算資源在發布基礎模型研究中的角色
The Role of Computing Resources in Publishing Foundation Model Research
October 15, 2025
作者: Yuexing Hao, Yue Huang, Haoran Zhang, Chenyang Zhao, Zhenwen Liang, Paul Pu Liang, Yue Zhao, Lichao Sun, Saleh Kalantari, Xiangliang Zhang, Marzyeh Ghassemi
cs.AI
摘要
人工智慧(AI)的前沿研究需要大量資源,包括圖形處理單元(GPU)、數據以及人力資源。本文評估了這些資源與基礎模型(FM)科學進展之間的關係。我們回顧了2022年至2024年間發表的6517篇FM論文,並對229位第一作者進行了調查,探討計算資源對科學產出的影響。我們發現,計算資源的增加與國家資金分配和引用次數相關,但我們的研究並未觀察到與研究環境(學術或工業)、領域或研究方法之間的強烈關聯。我們建議個人和機構專注於創造共享且負擔得起的計算機會,以降低資源不足研究者的進入門檻。這些措施有助於擴大FM研究的參與度,促進思想和貢獻者的多樣性,並維持AI的創新與進步。相關數據將公開於:https://mit-calc.csail.mit.edu/
English
Cutting-edge research in Artificial Intelligence (AI) requires considerable
resources, including Graphics Processing Units (GPUs), data, and human
resources. In this paper, we evaluate of the relationship between these
resources and the scientific advancement of foundation models (FM). We reviewed
6517 FM papers published between 2022 to 2024, and surveyed 229 first-authors
to the impact of computing resources on scientific output. We find that
increased computing is correlated with national funding allocations and
citations, but our findings don't observe the strong correlations with research
environment (academic or industrial), domain, or study methodology. We advise
that individuals and institutions focus on creating shared and affordable
computing opportunities to lower the entry barrier for under-resourced
researchers. These steps can help expand participation in FM research, foster
diversity of ideas and contributors, and sustain innovation and progress in AI.
The data will be available at: https://mit-calc.csail.mit.edu/