计算资源在发布基础模型研究中的关键作用
The Role of Computing Resources in Publishing Foundation Model Research
October 15, 2025
作者: Yuexing Hao, Yue Huang, Haoran Zhang, Chenyang Zhao, Zhenwen Liang, Paul Pu Liang, Yue Zhao, Lichao Sun, Saleh Kalantari, Xiangliang Zhang, Marzyeh Ghassemi
cs.AI
摘要
人工智能(AI)的前沿研究需要大量资源,包括图形处理单元(GPU)、数据以及人力资源。本文评估了这些资源与基础模型(FM)科学进展之间的关系。我们回顾了2022年至2024年间发表的6517篇FM论文,并对229位第一作者进行了调查,以了解计算资源对科研成果的影响。我们发现,计算能力的提升与国家资金分配和引用次数相关,但并未观察到其与研究环境(学术或工业)、领域或研究方法之间存在显著关联。我们建议个人和机构应致力于创建共享且可负担的计算机会,以降低资源匮乏研究者的入门门槛。这些措施有助于扩大FM研究的参与度,促进思想和贡献者的多样性,并持续推动AI领域的创新与进步。相关数据将发布于:https://mit-calc.csail.mit.edu/。
English
Cutting-edge research in Artificial Intelligence (AI) requires considerable
resources, including Graphics Processing Units (GPUs), data, and human
resources. In this paper, we evaluate of the relationship between these
resources and the scientific advancement of foundation models (FM). We reviewed
6517 FM papers published between 2022 to 2024, and surveyed 229 first-authors
to the impact of computing resources on scientific output. We find that
increased computing is correlated with national funding allocations and
citations, but our findings don't observe the strong correlations with research
environment (academic or industrial), domain, or study methodology. We advise
that individuals and institutions focus on creating shared and affordable
computing opportunities to lower the entry barrier for under-resourced
researchers. These steps can help expand participation in FM research, foster
diversity of ideas and contributors, and sustain innovation and progress in AI.
The data will be available at: https://mit-calc.csail.mit.edu/