AnyUp:通用特徵上採樣
AnyUp: Universal Feature Upsampling
October 14, 2025
作者: Thomas Wimmer, Prune Truong, Marie-Julie Rakotosaona, Michael Oechsle, Federico Tombari, Bernt Schiele, Jan Eric Lenssen
cs.AI
摘要
我們提出了AnyUp,這是一種特徵上採樣方法,可應用於任何解析度的視覺特徵,無需針對特定編碼器進行訓練。現有的基於學習的特徵上採樣器(如DINO或CLIP)需要為每個特徵提取器重新訓練,因此在推理時無法泛化到不同的特徵類型。在本研究中,我們提出了一種推理時特徵無關的上採樣架構,以緩解這一限制並提升上採樣質量。在實驗中,AnyUp為上採樣特徵設定了新的技術標準,能夠泛化到不同的特徵類型,並在保持特徵語義的同時,高效且易於應用於廣泛的下游任務。
English
We introduce AnyUp, a method for feature upsampling that can be applied to
any vision feature at any resolution, without encoder-specific training.
Existing learning-based upsamplers for features like DINO or CLIP need to be
re-trained for every feature extractor and thus do not generalize to different
feature types at inference time. In this work, we propose an inference-time
feature-agnostic upsampling architecture to alleviate this limitation and
improve upsampling quality. In our experiments, AnyUp sets a new state of the
art for upsampled features, generalizes to different feature types, and
preserves feature semantics while being efficient and easy to apply to a wide
range of downstream tasks.