AnyUp:通用特征上采样
AnyUp: Universal Feature Upsampling
October 14, 2025
作者: Thomas Wimmer, Prune Truong, Marie-Julie Rakotosaona, Michael Oechsle, Federico Tombari, Bernt Schiele, Jan Eric Lenssen
cs.AI
摘要
我们提出了AnyUp,一种适用于任意分辨率下任何视觉特征的上采样方法,无需针对特定编码器进行训练。现有的基于学习的特征上采样器,如DINO或CLIP,需要为每个特征提取器重新训练,因此在推理时无法泛化到不同的特征类型。在本研究中,我们提出了一种推理时特征无关的上采样架构,以缓解这一限制并提升上采样质量。实验表明,AnyUp在特征上采样方面确立了新的技术标杆,能够泛化至多种特征类型,在保持特征语义的同时,高效且易于应用于广泛的下游任务。
English
We introduce AnyUp, a method for feature upsampling that can be applied to
any vision feature at any resolution, without encoder-specific training.
Existing learning-based upsamplers for features like DINO or CLIP need to be
re-trained for every feature extractor and thus do not generalize to different
feature types at inference time. In this work, we propose an inference-time
feature-agnostic upsampling architecture to alleviate this limitation and
improve upsampling quality. In our experiments, AnyUp sets a new state of the
art for upsampled features, generalizes to different feature types, and
preserves feature semantics while being efficient and easy to apply to a wide
range of downstream tasks.