全分辨率部件生成:逐个生成高精度3D零件
FullPart: Generating each 3D Part at Full Resolution
October 30, 2025
作者: Lihe Ding, Shaocong Dong, Yaokun Li, Chenjian Gao, Xiao Chen, Rui Han, Yihao Kuang, Hong Zhang, Bo Huang, Zhanpeng Huang, Zibin Wang, Dan Xu, Tianfan Xue
cs.AI
摘要
基于部件的三维生成技术具有广泛的应用前景。现有部件生成方法中,采用隐式向量集表征的生成器常因几何细节不足而受限;另一类采用显式体素表征的方法虽共享全局体素网格,却易使小型部件占据过少体素而导致质量下降。本文提出FullPart创新框架,融合隐式与显式范式的优势:首先通过隐式边界框向量集扩散过程生成布局(该任务适合隐式扩散处理,因边界框标记本身不含复杂几何细节),随后在各部件独立的固定全分辨率体素网格中生成细节部件。相较于共享低分辨率空间的方法,本框架使每个部件(包括微小部件)均能以全分辨率生成,从而实现精细细节的合成。针对不同尺寸部件间信息交互的错位问题,我们进一步提出中心点编码策略以保持全局一致性。此外,为缓解可靠部件数据匮乏的现状,我们构建了迄今最大规模的人工标注三维部件数据集PartVerse-XL,包含4万物体与32万部件。大量实验表明,FullPart在三维部件生成任务中达到最先进水平。我们将公开全部代码、数据与模型,以促进三维部件生成领域的后续研究。
English
Part-based 3D generation holds great potential for various applications.
Previous part generators that represent parts using implicit vector-set tokens
often suffer from insufficient geometric details. Another line of work adopts
an explicit voxel representation but shares a global voxel grid among all
parts; this often causes small parts to occupy too few voxels, leading to
degraded quality. In this paper, we propose FullPart, a novel framework that
combines both implicit and explicit paradigms. It first derives the bounding
box layout through an implicit box vector-set diffusion process, a task that
implicit diffusion handles effectively since box tokens contain little
geometric detail. Then, it generates detailed parts, each within its own fixed
full-resolution voxel grid. Instead of sharing a global low-resolution space,
each part in our method - even small ones - is generated at full resolution,
enabling the synthesis of intricate details. We further introduce a
center-point encoding strategy to address the misalignment issue when
exchanging information between parts of different actual sizes, thereby
maintaining global coherence. Moreover, to tackle the scarcity of reliable part
data, we present PartVerse-XL, the largest human-annotated 3D part dataset to
date with 40K objects and 320K parts. Extensive experiments demonstrate that
FullPart achieves state-of-the-art results in 3D part generation. We will
release all code, data, and model to benefit future research in 3D part
generation.