人工通用智慧的定義
A Definition of AGI
October 21, 2025
作者: Dan Hendrycks, Dawn Song, Christian Szegedy, Honglak Lee, Yarin Gal, Erik Brynjolfsson, Sharon Li, Andy Zou, Lionel Levine, Bo Han, Jie Fu, Ziwei Liu, Jinwoo Shin, Kimin Lee, Mantas Mazeika, Long Phan, George Ingebretsen, Adam Khoja, Cihang Xie, Olawale Salaudeen, Matthias Hein, Kevin Zhao, Alexander Pan, David Duvenaud, Bo Li, Steve Omohundro, Gabriel Alfour, Max Tegmark, Kevin McGrew, Gary Marcus, Jaan Tallinn, Eric Schmidt, Yoshua Bengio
cs.AI
摘要
當前人工智慧通用智能(AGI)缺乏具體定義,導致現今專用型人工智慧與人類水平認知之間的差距難以釐清。本文提出一個可量化的框架來解決此問題,將AGI定義為需達到受過良好教育的成年人之認知廣度與熟練度。為實現此目標,我們以卡泰爾-霍恩-卡羅爾理論(目前實證最完備的人類認知模型)作為方法論基礎。該框架將通用智能分解為十大核心認知領域(包含推理、記憶與感知等),並改編成熟的人類心理計量測驗組來評估人工智慧系統。應用此框架分析發現,當代模型呈現高度「鋸齒狀」的認知剖面:雖然在知識密集型領域表現優異,現有人工智慧系統卻在基礎認知機制(特別是長期記憶儲存)存在關鍵缺陷。據此得出的AGI分數(如GPT-4達27%、GPT-5達58%)具體量化了當前技術的快速進展與實現AGI尚存的顯著差距。
English
The lack of a concrete definition for Artificial General Intelligence (AGI)
obscures the gap between today's specialized AI and human-level cognition. This
paper introduces a quantifiable framework to address this, defining AGI as
matching the cognitive versatility and proficiency of a well-educated adult. To
operationalize this, we ground our methodology in Cattell-Horn-Carroll theory,
the most empirically validated model of human cognition. The framework dissects
general intelligence into ten core cognitive domains-including reasoning,
memory, and perception-and adapts established human psychometric batteries to
evaluate AI systems. Application of this framework reveals a highly "jagged"
cognitive profile in contemporary models. While proficient in
knowledge-intensive domains, current AI systems have critical deficits in
foundational cognitive machinery, particularly long-term memory storage. The
resulting AGI scores (e.g., GPT-4 at 27%, GPT-5 at 58%) concretely quantify
both rapid progress and the substantial gap remaining before AGI.