ChatPaper.aiChatPaper

通用人工智能的定义

A Definition of AGI

October 21, 2025
作者: Dan Hendrycks, Dawn Song, Christian Szegedy, Honglak Lee, Yarin Gal, Erik Brynjolfsson, Sharon Li, Andy Zou, Lionel Levine, Bo Han, Jie Fu, Ziwei Liu, Jinwoo Shin, Kimin Lee, Mantas Mazeika, Long Phan, George Ingebretsen, Adam Khoja, Cihang Xie, Olawale Salaudeen, Matthias Hein, Kevin Zhao, Alexander Pan, David Duvenaud, Bo Li, Steve Omohundro, Gabriel Alfour, Max Tegmark, Kevin McGrew, Gary Marcus, Jaan Tallinn, Eric Schmidt, Yoshua Bengio
cs.AI

摘要

当前对通用人工智能(AGI)缺乏明确定义,导致人们难以看清当今专用人工智能与人类水平认知之间的差距。本文提出一种可量化的评估框架,将AGI定义为达到受过良好教育的成年人的认知广度与熟练度。为实现这一目标,我们将方法论建立在卡特尔-霍恩-卡罗尔理论——这一经过最广泛实证验证的人类认知模型之上。该框架将通用智能分解为十大核心认知领域(包括推理、记忆和感知),并采用成熟的人类心理计量测试工具来评估人工智能系统。应用该框架发现,当代模型呈现出高度"锯齿状"的认知能力分布:虽然现有AI系统在知识密集型领域表现优异,但在基础认知机制(尤其是长期记忆存储)方面存在严重缺陷。由此得出的AGI评分(如GPT-4为27%,GPT-5为58%)既量化了技术的飞速进步,也清晰标定了当前与AGI之间的实质性差距。
English
The lack of a concrete definition for Artificial General Intelligence (AGI) obscures the gap between today's specialized AI and human-level cognition. This paper introduces a quantifiable framework to address this, defining AGI as matching the cognitive versatility and proficiency of a well-educated adult. To operationalize this, we ground our methodology in Cattell-Horn-Carroll theory, the most empirically validated model of human cognition. The framework dissects general intelligence into ten core cognitive domains-including reasoning, memory, and perception-and adapts established human psychometric batteries to evaluate AI systems. Application of this framework reveals a highly "jagged" cognitive profile in contemporary models. While proficient in knowledge-intensive domains, current AI systems have critical deficits in foundational cognitive machinery, particularly long-term memory storage. The resulting AGI scores (e.g., GPT-4 at 27%, GPT-5 at 58%) concretely quantify both rapid progress and the substantial gap remaining before AGI.
PDF344December 17, 2025