肖像畫的可控光擴散
Controllable Light Diffusion for Portraits
May 8, 2023
作者: David Futschik, Kelvin Ritland, James Vecore, Sean Fanello, Sergio Orts-Escolano, Brian Curless, Daniel Sýkora, Rohit Pandey
cs.AI
摘要
我們介紹了光擴散,這是一種改善肖像照明的新方法,可以軟化嚴苛的陰影和高光,同時保留整個場景的照明。受專業攝影師的擴散器和遮光布的啟發,我們的方法可以在僅有一張肖像照片的情況下軟化照明。先前的肖像照明方法主要集中在改變整個照明環境,去除陰影(忽略強烈的高光),或完全去除陰影。相反地,我們提出了一種基於學習的方法,可以讓我們控制光擴散的程度並應用於野外肖像。此外,我們設計了一種方法,可以合成生成具有次表面散射效應的外部陰影,同時符合主題臉部的形狀。最後,我們展示了我們的方法如何提高更高級別的視覺應用的魯棒性,例如反照率估計、幾何估計和語義分割。
English
We introduce light diffusion, a novel method to improve lighting in
portraits, softening harsh shadows and specular highlights while preserving
overall scene illumination. Inspired by professional photographers' diffusers
and scrims, our method softens lighting given only a single portrait photo.
Previous portrait relighting approaches focus on changing the entire lighting
environment, removing shadows (ignoring strong specular highlights), or
removing shading entirely. In contrast, we propose a learning based method that
allows us to control the amount of light diffusion and apply it on in-the-wild
portraits. Additionally, we design a method to synthetically generate plausible
external shadows with sub-surface scattering effects while conforming to the
shape of the subject's face. Finally, we show how our approach can increase the
robustness of higher level vision applications, such as albedo estimation,
geometry estimation and semantic segmentation.