肖像画的可控光扩散
Controllable Light Diffusion for Portraits
May 8, 2023
作者: David Futschik, Kelvin Ritland, James Vecore, Sean Fanello, Sergio Orts-Escolano, Brian Curless, Daniel Sýkora, Rohit Pandey
cs.AI
摘要
我们介绍了光扩散,这是一种改善肖像照明的新方法,可以软化严厉的阴影和高光,同时保留整体场景的照明。受专业摄影师的扩散器和衬纱启发,我们的方法可以在仅有一张肖像照片的情况下软化照明。先前的肖像重照方法侧重于改变整个照明环境,消除阴影(忽略强烈的高光),或者完全消除遮蔽。相比之下,我们提出了一种基于学习的方法,允许我们控制光扩散的程度,并将其应用于野外肖像。此外,我们设计了一种方法,可以合成生成具有次表面散射效应的外部阴影,并符合主体脸部的形状。最后,我们展示了我们的方法如何提高更高级别视觉应用的稳健性,例如反照率估计、几何估计和语义分割。
English
We introduce light diffusion, a novel method to improve lighting in
portraits, softening harsh shadows and specular highlights while preserving
overall scene illumination. Inspired by professional photographers' diffusers
and scrims, our method softens lighting given only a single portrait photo.
Previous portrait relighting approaches focus on changing the entire lighting
environment, removing shadows (ignoring strong specular highlights), or
removing shading entirely. In contrast, we propose a learning based method that
allows us to control the amount of light diffusion and apply it on in-the-wild
portraits. Additionally, we design a method to synthetically generate plausible
external shadows with sub-surface scattering effects while conforming to the
shape of the subject's face. Finally, we show how our approach can increase the
robustness of higher level vision applications, such as albedo estimation,
geometry estimation and semantic segmentation.