用於高效X射線新視角合成的輻射高斯飛濺
Radiative Gaussian Splatting for Efficient X-ray Novel View Synthesis
March 7, 2024
作者: Yuanhao Cai, Yixun Liang, Jiahao Wang, Angtian Wang, Yulun Zhang, Xiaokang Yang, Zongwei Zhou, Alan Yuille
cs.AI
摘要
X射線由於比自然光具有更強的穿透力,因此廣泛應用於傳輸成像。在渲染新視角的X射線投影時,現有方法主要基於NeRF,但存在訓練時間長和推斷速度慢的問題。本文提出了一種基於3D高斯飛濺的框架,名為X-Gaussian,用於X射線新視角合成。首先,我們重新設計了一個受X射線成像各向同性特性啟發的輻射高斯點雲模型。我們的模型在學習預測3D點的輻射強度時排除了視角方向的影響。基於此模型,我們開發了一種可微的輻射光柵化(DRR),並實現了CUDA版本。其次,我們定制了一種角度-姿勢立方體均勻初始化(ACUI)策略,直接使用X射線掃描儀的參數來計算相機信息,然後在包圍被掃描物體的立方體內均勻採樣點位置。實驗表明,我們的X-Gaussian在享受不到15%的訓練時間和超過73倍的推斷速度的情況下,優於最先進的方法6.5 dB。在稀疏視圖CT重建上的應用也揭示了我們方法的實際價值。代碼和模型將在https://github.com/caiyuanhao1998/X-Gaussian 上公開。訓練過程可視化的視頻演示在https://www.youtube.com/watch?v=gDVf_Ngeghg。
English
X-ray is widely applied for transmission imaging due to its stronger
penetration than natural light. When rendering novel view X-ray projections,
existing methods mainly based on NeRF suffer from long training time and slow
inference speed. In this paper, we propose a 3D Gaussian splatting-based
framework, namely X-Gaussian, for X-ray novel view synthesis. Firstly, we
redesign a radiative Gaussian point cloud model inspired by the isotropic
nature of X-ray imaging. Our model excludes the influence of view direction
when learning to predict the radiation intensity of 3D points. Based on this
model, we develop a Differentiable Radiative Rasterization (DRR) with CUDA
implementation. Secondly, we customize an Angle-pose Cuboid Uniform
Initialization (ACUI) strategy that directly uses the parameters of the X-ray
scanner to compute the camera information and then uniformly samples point
positions within a cuboid enclosing the scanned object. Experiments show that
our X-Gaussian outperforms state-of-the-art methods by 6.5 dB while enjoying
less than 15% training time and over 73x inference speed. The application on
sparse-view CT reconstruction also reveals the practical values of our method.
Code and models will be publicly available at
https://github.com/caiyuanhao1998/X-Gaussian . A video demo of the training
process visualization is at https://www.youtube.com/watch?v=gDVf_Ngeghg .