高效X射线新视角合成的辐射高斯飞溅
Radiative Gaussian Splatting for Efficient X-ray Novel View Synthesis
March 7, 2024
作者: Yuanhao Cai, Yixun Liang, Jiahao Wang, Angtian Wang, Yulun Zhang, Xiaokang Yang, Zongwei Zhou, Alan Yuille
cs.AI
摘要
由于X射线的穿透能力强于自然光,因此广泛应用于传输成像。在渲染新视角的X射线投影时,现有方法主要基于NeRF,但存在训练时间长和推理速度慢的问题。本文提出了一种基于3D高斯飞溅的框架,名为X-Gaussian,用于X射线新视角合成。首先,我们重新设计了一个受X射线成像各向同性特性启发的辐射高斯点云模型。我们的模型在学习预测3D点的辐射强度时排除了视角方向的影响。基于这一模型,我们开发了一个带CUDA实现的可微辐射光栅化(DRR)。其次,我们定制了一个角度-姿态立方体均匀初始化(ACUI)策略,直接使用X射线扫描仪的参数计算相机信息,然后在包围扫描对象的立方体内均匀采样点位置。实验表明,我们的X-Gaussian在享受少于15%的训练时间和超过73倍推理速度的同时,优于最先进的方法6.5 dB。在稀疏视图CT重建上的应用也揭示了我们方法的实际价值。代码和模型将在https://github.com/caiyuanhao1998/X-Gaussian 上公开。训练过程可视化的视频演示请访问https://www.youtube.com/watch?v=gDVf_Ngeghg。
English
X-ray is widely applied for transmission imaging due to its stronger
penetration than natural light. When rendering novel view X-ray projections,
existing methods mainly based on NeRF suffer from long training time and slow
inference speed. In this paper, we propose a 3D Gaussian splatting-based
framework, namely X-Gaussian, for X-ray novel view synthesis. Firstly, we
redesign a radiative Gaussian point cloud model inspired by the isotropic
nature of X-ray imaging. Our model excludes the influence of view direction
when learning to predict the radiation intensity of 3D points. Based on this
model, we develop a Differentiable Radiative Rasterization (DRR) with CUDA
implementation. Secondly, we customize an Angle-pose Cuboid Uniform
Initialization (ACUI) strategy that directly uses the parameters of the X-ray
scanner to compute the camera information and then uniformly samples point
positions within a cuboid enclosing the scanned object. Experiments show that
our X-Gaussian outperforms state-of-the-art methods by 6.5 dB while enjoying
less than 15% training time and over 73x inference speed. The application on
sparse-view CT reconstruction also reveals the practical values of our method.
Code and models will be publicly available at
https://github.com/caiyuanhao1998/X-Gaussian . A video demo of the training
process visualization is at https://www.youtube.com/watch?v=gDVf_Ngeghg .