野生高斯:野外的三維高斯點陣化
WildGaussians: 3D Gaussian Splatting in the Wild
July 11, 2024
作者: Jonas Kulhanek, Songyou Peng, Zuzana Kukelova, Marc Pollefeys, Torsten Sattler
cs.AI
摘要
儘管在3D場景重建領域中,由於其逼真的質量,NeRFs佔主導地位,但最近出現了3D高斯飛灑(3DGS),提供了與實時渲染速度相近的相似質量。然而,這兩種方法主要在控制良好的3D場景中表現出色,而在野外數據——以遮蔽、動態物體和不同照明為特徵——仍然具有挑戰性。NeRFs可以通過每幅圖像的嵌入向量輕鬆適應這些條件,但3DGS由於其明確表示和缺乏共享參數而遇到困難。為了解決這個問題,我們引入了WildGaussians,一種處理3DGS中遮蔽和外觀變化的新方法。通過利用強大的DINO特徵並在3DGS內部集成外觀建模模塊,我們的方法實現了最先進的結果。我們展示了WildGaussians與3DGS的實時渲染速度相匹配,同時在處理野外數據方面超越了3DGS和NeRF的基準線,所有這些都在一個簡單的架構框架內實現。
English
While the field of 3D scene reconstruction is dominated by NeRFs due to their
photorealistic quality, 3D Gaussian Splatting (3DGS) has recently emerged,
offering similar quality with real-time rendering speeds. However, both methods
primarily excel with well-controlled 3D scenes, while in-the-wild data -
characterized by occlusions, dynamic objects, and varying illumination -
remains challenging. NeRFs can adapt to such conditions easily through
per-image embedding vectors, but 3DGS struggles due to its explicit
representation and lack of shared parameters. To address this, we introduce
WildGaussians, a novel approach to handle occlusions and appearance changes
with 3DGS. By leveraging robust DINO features and integrating an appearance
modeling module within 3DGS, our method achieves state-of-the-art results. We
demonstrate that WildGaussians matches the real-time rendering speed of 3DGS
while surpassing both 3DGS and NeRF baselines in handling in-the-wild data, all
within a simple architectural framework.Summary
AI-Generated Summary