野生高斯:野外的3D高斯点渲染
WildGaussians: 3D Gaussian Splatting in the Wild
July 11, 2024
作者: Jonas Kulhanek, Songyou Peng, Zuzana Kukelova, Marc Pollefeys, Torsten Sattler
cs.AI
摘要
虽然由于其照片级质量,NeRFs主导了3D场景重建领域,但最近出现了3D高斯飘零(3DGS),以实时渲染速度提供类似质量。然而,这两种方法主要擅长处理受控制良好的3D场景,而在野外数据中——其特点是遮挡、动态物体和光照变化——仍然具有挑战性。NeRFs可以通过每个图像的嵌入向量轻松适应这些条件,但3DGS由于其显式表示和缺乏共享参数而面临困难。为了解决这个问题,我们引入了WildGaussians,这是一种处理遮挡和外观变化的新方法,结合了强大的DINO特征,并在3DGS内部集成了外观建模模块,我们的方法实现了最先进的结果。我们展示了WildGaussians与3DGS的实时渲染速度相匹配,同时在处理野外数据方面超越了3DGS和NeRF的基准线,所有这些都在一个简单的架构框架内实现。
English
While the field of 3D scene reconstruction is dominated by NeRFs due to their
photorealistic quality, 3D Gaussian Splatting (3DGS) has recently emerged,
offering similar quality with real-time rendering speeds. However, both methods
primarily excel with well-controlled 3D scenes, while in-the-wild data -
characterized by occlusions, dynamic objects, and varying illumination -
remains challenging. NeRFs can adapt to such conditions easily through
per-image embedding vectors, but 3DGS struggles due to its explicit
representation and lack of shared parameters. To address this, we introduce
WildGaussians, a novel approach to handle occlusions and appearance changes
with 3DGS. By leveraging robust DINO features and integrating an appearance
modeling module within 3DGS, our method achieves state-of-the-art results. We
demonstrate that WildGaussians matches the real-time rendering speed of 3DGS
while surpassing both 3DGS and NeRF baselines in handling in-the-wild data, all
within a simple architectural framework.Summary
AI-Generated Summary