IntFold:一種可控的基礎模型,適用於通用與專項生物分子結構預測
IntFold: A Controllable Foundation Model for General and Specialized Biomolecular Structure Prediction
July 2, 2025
作者: The IntFold Team, Leon Qiao, Wayne Bai, He Yan, Gary Liu, Nova Xi, Xiang Zhang
cs.AI
摘要
我們介紹了IntFold,這是一個可控的基礎模型,適用於一般及專業生物分子結構的預測。IntFold展現出與當前最先進的AlphaFold3相媲美的預測準確性,同時採用了更優化的自定義注意力核心。除了標準的結構預測外,IntFold還能夠通過使用個別適配器來預測變構態、受限結構以及結合親和力。此外,我們引入了一種新穎的置信度頭部來評估對接質量,為諸如抗體-抗原複合體等挑戰性目標提供了更細緻的評估。最後,我們分享了在這一計算密集型模型訓練過程中所獲得的洞見。
English
We introduce IntFold, a controllable foundation model for both general and
specialized biomolecular structure prediction. IntFold demonstrates predictive
accuracy comparable to the state-of-the-art AlphaFold3, while utilizing a
superior customized attention kernel. Beyond standard structure prediction,
IntFold can be adapted to predict allosteric states, constrained structures,
and binding affinity through the use of individual adapters. Furthermore, we
introduce a novel confidence head to estimate docking quality, offering a more
nuanced assessment for challenging targets such as antibody-antigen complexes.
Finally, we share insights gained during the training process of this
computationally intensive model.