人類動作反學習
Human Motion Unlearning
March 24, 2025
作者: Edoardo De Matteis, Matteo Migliarini, Alessio Sampieri, Indro Spinelli, Fabio Galasso
cs.AI
摘要
我們提出了人體運動遺忘任務,旨在防止生成有害動畫的同時,保持文本到運動生成的一般性能。遺忘有害運動具有挑戰性,因為這些運動既可以由顯式文本提示生成,也可以由安全運動的隱式有害組合產生(例如,「踢腿」是「抬腿和擺腿」的組合)。我們通過從大型且最新的文本到運動數據集HumanML3D和Motion-X中過濾有害運動,提出了首個運動遺忘基準。我們提出了基線方法,通過適應最先進的圖像遺忘技術來處理時空信號。最後,我們提出了一種基於潛在代碼替換的新型運動遺忘模型,簡稱LCR。LCR無需訓練,並且適用於最先進的文本到運動擴散模型的離散潛在空間。LCR方法簡單,在質量和數量上均一致優於基線方法。項目頁面:https://www.pinlab.org/hmu{https://www.pinlab.org/hmu}。
English
We introduce the task of human motion unlearning to prevent the synthesis of
toxic animations while preserving the general text-to-motion generative
performance. Unlearning toxic motions is challenging as those can be generated
from explicit text prompts and from implicit toxic combinations of safe motions
(e.g., ``kicking" is ``loading and swinging a leg"). We propose the first
motion unlearning benchmark by filtering toxic motions from the large and
recent text-to-motion datasets of HumanML3D and Motion-X. We propose baselines,
by adapting state-of-the-art image unlearning techniques to process
spatio-temporal signals. Finally, we propose a novel motion unlearning model
based on Latent Code Replacement, which we dub LCR. LCR is training-free and
suitable to the discrete latent spaces of state-of-the-art text-to-motion
diffusion models. LCR is simple and consistently outperforms baselines
qualitatively and quantitatively. Project page:
https://www.pinlab.org/hmu{https://www.pinlab.org/hmu}.Summary
AI-Generated Summary