人类运动反学习
Human Motion Unlearning
March 24, 2025
作者: Edoardo De Matteis, Matteo Migliarini, Alessio Sampieri, Indro Spinelli, Fabio Galasso
cs.AI
摘要
我们提出了人体运动遗忘任务,旨在防止生成有害动画的同时保持通用文本到运动生成性能。遗忘有害运动具有挑战性,因为这些运动既可能由显式文本提示生成,也可能由安全运动的隐含有害组合产生(例如,“踢腿”是“抬腿并摆动”)。我们通过从大规模且最新的文本到运动数据集HumanML3D和Motion-X中筛选出有害运动,首次建立了运动遗忘基准。我们提出了基线方法,通过将最先进的图像遗忘技术适配于处理时空信号。最后,我们提出了一种基于潜在代码替换的新型运动遗忘模型,简称LCR。LCR无需训练,适用于当前最先进的文本到运动扩散模型的离散潜在空间。LCR方法简洁,在定性和定量评估中均持续优于基线方法。项目页面:https://www.pinlab.org/hmu{https://www.pinlab.org/hmu}。
English
We introduce the task of human motion unlearning to prevent the synthesis of
toxic animations while preserving the general text-to-motion generative
performance. Unlearning toxic motions is challenging as those can be generated
from explicit text prompts and from implicit toxic combinations of safe motions
(e.g., ``kicking" is ``loading and swinging a leg"). We propose the first
motion unlearning benchmark by filtering toxic motions from the large and
recent text-to-motion datasets of HumanML3D and Motion-X. We propose baselines,
by adapting state-of-the-art image unlearning techniques to process
spatio-temporal signals. Finally, we propose a novel motion unlearning model
based on Latent Code Replacement, which we dub LCR. LCR is training-free and
suitable to the discrete latent spaces of state-of-the-art text-to-motion
diffusion models. LCR is simple and consistently outperforms baselines
qualitatively and quantitatively. Project page:
https://www.pinlab.org/hmu{https://www.pinlab.org/hmu}.Summary
AI-Generated Summary