ChatPaper.aiChatPaper

ReFT:語言模型的表示微調

ReFT: Representation Finetuning for Language Models

April 4, 2024
作者: Zhengxuan Wu, Aryaman Arora, Zheng Wang, Atticus Geiger, Dan Jurafsky, Christopher D. Manning, Christopher Potts
cs.AI

摘要

參數高效微調(PEFT)方法旨在通過對少量權重進行更新來調整大型模型。然而,許多先前的可解釋性研究顯示,表示編碼了豐富的語義信息,暗示編輯表示可能是一種更強大的替代方案。在這裡,我們通過開發一系列表示微調(ReFT)方法來追求這一假設。ReFT方法在凍結的基本模型上運行,並學習對隱藏表示進行特定任務的干預。我們定義了ReFT家族的一個強實例,即低秩線性子空間ReFT(LoReFT)。LoReFT是現有PEFT的即插即用替代方案,學習的干預比先前最先進的PEFT高效10倍至50倍。我們展示了LoReFT在八個常識推理任務、四個算術推理任務、Alpaca-Eval v1.0和GLUE上的應用。在所有這些評估中,LoReFT提供了效率和性能的最佳平衡,幾乎總是優於最先進的PEFT。我們在https://github.com/stanfordnlp/pyreft 公開發布了一個通用的ReFT訓練庫。
English
Parameter-efficient fine-tuning (PEFT) methods seek to adapt large models via updates to a small number of weights. However, much prior interpretability work has shown that representations encode rich semantic information, suggesting that editing representations might be a more powerful alternative. Here, we pursue this hypothesis by developing a family of Representation Finetuning (ReFT) methods. ReFT methods operate on a frozen base model and learn task-specific interventions on hidden representations. We define a strong instance of the ReFT family, Low-rank Linear Subspace ReFT (LoReFT). LoReFT is a drop-in replacement for existing PEFTs and learns interventions that are 10x-50x more parameter-efficient than prior state-of-the-art PEFTs. We showcase LoReFT on eight commonsense reasoning tasks, four arithmetic reasoning tasks, Alpaca-Eval v1.0, and GLUE. In all these evaluations, LoReFT delivers the best balance of efficiency and performance, and almost always outperforms state-of-the-art PEFTs. We release a generic ReFT training library publicly at https://github.com/stanfordnlp/pyreft.

Summary

AI-Generated Summary

PDF9817December 15, 2024