ReFT:语言模型的表示微调
ReFT: Representation Finetuning for Language Models
April 4, 2024
作者: Zhengxuan Wu, Aryaman Arora, Zheng Wang, Atticus Geiger, Dan Jurafsky, Christopher D. Manning, Christopher Potts
cs.AI
摘要
参数高效微调(PEFT)方法旨在通过对少量权重进行更新来调整大型模型。然而,许多先前的可解释性研究表明,表示编码了丰富的语义信息,这表明编辑表示可能是一种更强大的替代方法。在这里,我们通过开发一系列表示微调(ReFT)方法来探讨这一假设。ReFT方法在一个冻结的基础模型上运行,并学习对隐藏表示进行任务特定干预。我们定义了ReFT系列的一个强实例,即低秩线性子空间ReFT(LoReFT)。LoReFT可以直接替代现有的PEFT,并学习比先前最先进的PEFT高10倍至50倍的参数高效干预。我们在八个常识推理任务、四个算术推理任务、Alpaca-Eval v1.0和GLUE上展示了LoReFT。在所有这些评估中,LoReFT提供了效率和性能的最佳平衡,并几乎总是优于最先进的PEFT。我们在https://github.com/stanfordnlp/pyreft 上公开发布了一个通用的ReFT训练库。
English
Parameter-efficient fine-tuning (PEFT) methods seek to adapt large models via
updates to a small number of weights. However, much prior interpretability work
has shown that representations encode rich semantic information, suggesting
that editing representations might be a more powerful alternative. Here, we
pursue this hypothesis by developing a family of Representation
Finetuning (ReFT) methods. ReFT methods operate on a frozen base model and
learn task-specific interventions on hidden representations. We define a strong
instance of the ReFT family, Low-rank Linear Subspace ReFT (LoReFT). LoReFT is
a drop-in replacement for existing PEFTs and learns interventions that are
10x-50x more parameter-efficient than prior state-of-the-art PEFTs. We showcase
LoReFT on eight commonsense reasoning tasks, four arithmetic reasoning tasks,
Alpaca-Eval v1.0, and GLUE. In all these evaluations, LoReFT delivers the best
balance of efficiency and performance, and almost always outperforms
state-of-the-art PEFTs. We release a generic ReFT training library publicly at
https://github.com/stanfordnlp/pyreft.Summary
AI-Generated Summary