WebGLM:朝向具人類偏好的高效Web增強問答系統前進
WebGLM: Towards An Efficient Web-Enhanced Question Answering System with Human Preferences
June 13, 2023
作者: Xiao Liu, Hanyu Lai, Hao Yu, Yifan Xu, Aohan Zeng, Zhengxiao Du, Peng Zhang, Yuxiao Dong, Jie Tang
cs.AI
摘要
我們提出了WebGLM,這是一個基於通用語言模型(GLM)的網頁增強問答系統。其目標是通過在現有的大型語言模型(LLM)上增加網頁搜索和檢索功能,同時保持在實際部署中的高效性。為了實現這一目標,我們為LLM增強的檢索器、引導生成器和人類偏好感知評分器開發了WebGLM策略。具體來說,我們識別並解決了WebGPT(OpenAI)的限制,從而使WebGLM具有準確性、效率和成本效益方面的優勢。此外,我們提出了評估網頁增強型QA系統的系統性標準。我們進行了多維人類評估和定量消融研究,結果表明所提出的WebGLM設計優於現有系統。WebGLM搭載10億參數的GLM(10B)在人類評估中表現優於相似大小的WebGPT(13B),甚至與WebGPT(175B)相當。代碼、演示和數據可在https://github.com/THUDM/WebGLM找到。
English
We present WebGLM, a web-enhanced question-answering system based on the
General Language Model (GLM). Its goal is to augment a pre-trained large
language model (LLM) with web search and retrieval capabilities while being
efficient for real-world deployments. To achieve this, we develop WebGLM with
strategies for the LLM-augmented retriever, bootstrapped generator, and human
preference-aware scorer. Specifically, we identify and address the limitations
of WebGPT (OpenAI), through which WebGLM is enabled with accuracy, efficiency,
and cost-effectiveness advantages. In addition, we propose systematic criteria
for evaluating web-enhanced QA systems. We conduct multi-dimensional human
evaluation and quantitative ablation studies, which suggest the outperformance
of the proposed WebGLM designs over existing systems. WebGLM with the
10-billion-parameter GLM (10B) is shown to perform better than the
similar-sized WebGPT (13B) and even comparably to WebGPT (175B) in human
evaluation. The code, demo, and data are at
https://github.com/THUDM/WebGLM.