WebGLM:面向具有人类偏好的高效网络增强问答系统
WebGLM: Towards An Efficient Web-Enhanced Question Answering System with Human Preferences
June 13, 2023
作者: Xiao Liu, Hanyu Lai, Hao Yu, Yifan Xu, Aohan Zeng, Zhengxiao Du, Peng Zhang, Yuxiao Dong, Jie Tang
cs.AI
摘要
我们提出了WebGLM,这是一个基于通用语言模型(GLM)的增强型问答系统,旨在增强预训练的大型语言模型(LLM)的网络搜索和检索能力,同时适用于实际部署。为实现这一目标,我们开发了WebGLM,并采用LLM增强的检索器、引导式生成器和人类偏好感知评分器等策略。具体来说,我们识别并解决了WebGPT(OpenAI)的局限性,使WebGLM在准确性、效率和成本效益方面具有优势。此外,我们提出了评估增强型网络问答系统的系统性标准。我们进行了多维人类评估和定量消融研究,结果表明所提出的WebGLM设计优于现有系统。在人类评估中,具有100亿参数GLM(10B)的WebGLM表现优于相似规模的WebGPT(13B),甚至与WebGPT(175B)相媲美。代码、演示和数据可在https://github.com/THUDM/WebGLM找到。
English
We present WebGLM, a web-enhanced question-answering system based on the
General Language Model (GLM). Its goal is to augment a pre-trained large
language model (LLM) with web search and retrieval capabilities while being
efficient for real-world deployments. To achieve this, we develop WebGLM with
strategies for the LLM-augmented retriever, bootstrapped generator, and human
preference-aware scorer. Specifically, we identify and address the limitations
of WebGPT (OpenAI), through which WebGLM is enabled with accuracy, efficiency,
and cost-effectiveness advantages. In addition, we propose systematic criteria
for evaluating web-enhanced QA systems. We conduct multi-dimensional human
evaluation and quantitative ablation studies, which suggest the outperformance
of the proposed WebGLM designs over existing systems. WebGLM with the
10-billion-parameter GLM (10B) is shown to perform better than the
similar-sized WebGPT (13B) and even comparably to WebGPT (175B) in human
evaluation. The code, demo, and data are at
https://github.com/THUDM/WebGLM.