Ministral 3
Ministral 3
January 13, 2026
作者: Alexander H. Liu, Kartik Khandelwal, Sandeep Subramanian, Victor Jouault, Abhinav Rastogi, Adrien Sadé, Alan Jeffares, Albert Jiang, Alexandre Cahill, Alexandre Gavaudan, Alexandre Sablayrolles, Amélie Héliou, Amos You, Andy Ehrenberg, Andy Lo, Anton Eliseev, Antonia Calvi, Avinash Sooriyarachchi, Baptiste Bout, Baptiste Rozière, Baudouin De Monicault, Clémence Lanfranchi, Corentin Barreau, Cyprien Courtot, Daniele Grattarola, Darius Dabert, Diego de las Casas, Elliot Chane-Sane, Faruk Ahmed, Gabrielle Berrada, Gaëtan Ecrepont, Gauthier Guinet, Georgii Novikov, Guillaume Kunsch, Guillaume Lample, Guillaume Martin, Gunshi Gupta, Jan Ludziejewski, Jason Rute, Joachim Studnia, Jonas Amar, Joséphine Delas, Josselin Somerville Roberts, Karmesh Yadav, Khyathi Chandu, Kush Jain, Laurence Aitchison, Laurent Fainsin, Léonard Blier, Lingxiao Zhao, Louis Martin, Lucile Saulnier, Luyu Gao, Maarten Buyl, Margaret Jennings, Marie Pellat, Mark Prins, Mathieu Poirée, Mathilde Guillaumin, Matthieu Dinot, Matthieu Futeral, Maxime Darrin, Maximilian Augustin, Mia Chiquier, Michel Schimpf, Nathan Grinsztajn, Neha Gupta, Nikhil Raghuraman, Olivier Bousquet, Olivier Duchenne, Patricia Wang, Patrick von Platen, Paul Jacob, Paul Wambergue, Paula Kurylowicz, Pavankumar Reddy Muddireddy, Philomène Chagniot, Pierre Stock, Pravesh Agrawal, Quentin Torroba, Romain Sauvestre, Roman Soletskyi, Rupert Menneer, Sagar Vaze, Samuel Barry, Sanchit Gandhi, Siddhant Waghjale, Siddharth Gandhi, Soham Ghosh, Srijan Mishra, Sumukh Aithal, Szymon Antoniak, Teven Le Scao, Théo Cachet, Theo Simon Sorg, Thibaut Lavril, Thiziri Nait Saada, Thomas Chabal, Thomas Foubert, Thomas Robert, Thomas Wang, Tim Lawson, Tom Bewley, Tom Bewley, Tom Edwards, Umar Jamil, Umberto Tomasini, Valeriia Nemychnikova, Van Phung, Vincent Maladière, Virgile Richard, Wassim Bouaziz, Wen-Ding Li, William Marshall, Xinghui Li, Xinyu Yang, Yassine El Ouahidi, Yihan Wang, Yunhao Tang, Zaccharie Ramzi
cs.AI
摘要
我們推出Ministral 3系列模型——專為計算與記憶體受限應用設計的參數高效密集型語言模型家族,提供三種參數規模:30億、80億及140億參數。針對每種規模,我們發布三個變體:適用通用場景的預訓練基礎模型、指令微調模型,以及用於複雜問題求解的推理模型。此外,我們提出通過級聯蒸餾技術實現Ministral 3模型的推導方法,該技術融合迭代式剪枝與蒸餾持續訓練。所有模型均具備圖像理解能力,並以Apache 2.0開源協議發布。
English
We introduce the Ministral 3 series, a family of parameter-efficient dense language models designed for compute and memory constrained applications, available in three model sizes: 3B, 8B, and 14B parameters. For each model size, we release three variants: a pretrained base model for general-purpose use, an instruction finetuned, and a reasoning model for complex problem-solving. In addition, we present our recipe to derive the Ministral 3 models through Cascade Distillation, an iterative pruning and continued training with distillation technique. Each model comes with image understanding capabilities, all under the Apache 2.0 license.