Ministral 3 是 Mistral AI 公司推出的最新一代开源大语言模型,作为 Ministral 系列的重要升级版本,该模型在推理效率、多语言处理能力和指令遵循精度方面均有显著提升。其创新性地采用混合专家架构,在保持70亿参数规模的基础上,通过激活稀疏性实现更快的推理速度,并针对代码生成、数学推理等专业领域进行了优化训练。该模型支持32K上下文长度,具备强大的工具调用功能,并遵循Apache 2.0开源协议,为研究者和开发者提供了更高效的AI解决方案。
Ministral 3
January 13, 2026
作者: Alexander H. Liu, Kartik Khandelwal, Sandeep Subramanian, Victor Jouault, Abhinav Rastogi, Adrien Sadé, Alan Jeffares, Albert Jiang, Alexandre Cahill, Alexandre Gavaudan, Alexandre Sablayrolles, Amélie Héliou, Amos You, Andy Ehrenberg, Andy Lo, Anton Eliseev, Antonia Calvi, Avinash Sooriyarachchi, Baptiste Bout, Baptiste Rozière, Baudouin De Monicault, Clémence Lanfranchi, Corentin Barreau, Cyprien Courtot, Daniele Grattarola, Darius Dabert, Diego de las Casas, Elliot Chane-Sane, Faruk Ahmed, Gabrielle Berrada, Gaëtan Ecrepont, Gauthier Guinet, Georgii Novikov, Guillaume Kunsch, Guillaume Lample, Guillaume Martin, Gunshi Gupta, Jan Ludziejewski, Jason Rute, Joachim Studnia, Jonas Amar, Joséphine Delas, Josselin Somerville Roberts, Karmesh Yadav, Khyathi Chandu, Kush Jain, Laurence Aitchison, Laurent Fainsin, Léonard Blier, Lingxiao Zhao, Louis Martin, Lucile Saulnier, Luyu Gao, Maarten Buyl, Margaret Jennings, Marie Pellat, Mark Prins, Mathieu Poirée, Mathilde Guillaumin, Matthieu Dinot, Matthieu Futeral, Maxime Darrin, Maximilian Augustin, Mia Chiquier, Michel Schimpf, Nathan Grinsztajn, Neha Gupta, Nikhil Raghuraman, Olivier Bousquet, Olivier Duchenne, Patricia Wang, Patrick von Platen, Paul Jacob, Paul Wambergue, Paula Kurylowicz, Pavankumar Reddy Muddireddy, Philomène Chagniot, Pierre Stock, Pravesh Agrawal, Quentin Torroba, Romain Sauvestre, Roman Soletskyi, Rupert Menneer, Sagar Vaze, Samuel Barry, Sanchit Gandhi, Siddhant Waghjale, Siddharth Gandhi, Soham Ghosh, Srijan Mishra, Sumukh Aithal, Szymon Antoniak, Teven Le Scao, Théo Cachet, Theo Simon Sorg, Thibaut Lavril, Thiziri Nait Saada, Thomas Chabal, Thomas Foubert, Thomas Robert, Thomas Wang, Tim Lawson, Tom Bewley, Tom Bewley, Tom Edwards, Umar Jamil, Umberto Tomasini, Valeriia Nemychnikova, Van Phung, Vincent Maladière, Virgile Richard, Wassim Bouaziz, Wen-Ding Li, William Marshall, Xinghui Li, Xinyu Yang, Yassine El Ouahidi, Yihan Wang, Yunhao Tang, Zaccharie Ramzi
cs.AI
摘要
我们推出Ministral 3系列模型——一组专为计算和内存受限场景设计的参数高效型稠密语言模型,提供三种参数量版本:30亿、80亿和140亿参数。每个尺寸均包含三个变体:面向通用场景的预训练基础模型、指令微调模型以及专攻复杂问题求解的推理模型。此外,我们首次公开通过级联蒸馏技术得到Ministral 3模型的方法论,该技术融合了迭代式剪枝与持续蒸馏训练。全系模型均具备图像理解能力,并以Apache 2.0许可证开源发布。
English
We introduce the Ministral 3 series, a family of parameter-efficient dense language models designed for compute and memory constrained applications, available in three model sizes: 3B, 8B, and 14B parameters. For each model size, we release three variants: a pretrained base model for general-purpose use, an instruction finetuned, and a reasoning model for complex problem-solving. In addition, we present our recipe to derive the Ministral 3 models through Cascade Distillation, an iterative pruning and continued training with distillation technique. Each model comes with image understanding capabilities, all under the Apache 2.0 license.