ChatPaper.aiChatPaper

MemGovern:透過學習受規範的人類經驗來增強程式碼代理

MemGovern: Enhancing Code Agents through Learning from Governed Human Experiences

January 11, 2026
作者: Qihao Wang, Ziming Cheng, Shuo Zhang, Fan Liu, Rui Xu, Heng Lian, Kunyi Wang, Xiaoming Yu, Jianghao Yin, Sen Hu, Yue Hu, Shaolei Zhang, Yanbing Liu, Ronghao Chen, Huacan Wang
cs.AI

摘要

儘管自主軟體工程代理正重塑程式設計範式,但目前存在「封閉世界」的侷限性:它們嘗試從零開始或僅依賴本地上下文來修復錯誤,卻忽略了GitHub等平台上可用的龐大人類歷史經驗。由於現實世界問題追蹤數據的非結構化與碎片化特性,存取這些開放世界經驗面臨阻礙。本文提出MemGovern框架,旨在治理原始GitHub數據並將其轉化為代理可操作的經驗記憶。MemGovern透過經驗治理將人類經驗轉換為代理友好的經驗卡片,並引入代理式經驗搜尋策略,實現邏輯驅動的人類專業知識檢索。透過生成13.5萬張經治理的經驗卡片,MemGovern實現了顯著效能提升,在SWE-bench Verified上的問題解決率提高4.65%。作為外掛式解決方案,MemGovern為代理友好型記憶基礎設施提供了創新實踐。
English
While autonomous software engineering (SWE) agents are reshaping programming paradigms, they currently suffer from a "closed-world" limitation: they attempt to fix bugs from scratch or solely using local context, ignoring the immense historical human experience available on platforms like GitHub. Accessing this open-world experience is hindered by the unstructured and fragmented nature of real-world issue-tracking data. In this paper, we introduce MemGovern, a framework designed to govern and transform raw GitHub data into actionable experiential memory for agents. MemGovern employs experience governance to convert human experience into agent-friendly experience cards and introduces an agentic experience search strategy that enables logic-driven retrieval of human expertise. By producing 135K governed experience cards, MemGovern achieves a significant performance boost, improving resolution rates on the SWE-bench Verified by 4.65%. As a plug-in approach, MemGovern provides a solution for agent-friendly memory infrastructure.
PDF591January 15, 2026