ChatPaper.aiChatPaper

MemGovern:通过借鉴受治理的人类经验增强代码智能体

MemGovern: Enhancing Code Agents through Learning from Governed Human Experiences

January 11, 2026
作者: Qihao Wang, Ziming Cheng, Shuo Zhang, Fan Liu, Rui Xu, Heng Lian, Kunyi Wang, Xiaoming Yu, Jianghao Yin, Sen Hu, Yue Hu, Shaolei Zhang, Yanbing Liu, Ronghao Chen, Huacan Wang
cs.AI

摘要

尽管自主软件工程(SWE)智能体正在重塑编程范式,但目前存在"封闭世界"的局限性:它们试图从零开始或仅依赖本地上下文修复错误,却忽略了GitHub等平台上可获取的海量历史人类经验。现实世界中问题追踪数据的非结构化与碎片化特性,阻碍了对这些开放世界经验的获取。本文提出MemGovern框架,通过治理原始GitHub数据将其转化为智能体可操作的经验记忆。MemGovern采用经验治理机制将人类经验转化为智能体友好的经验卡片,并引入智能体经验搜索策略实现逻辑驱动的人类专业知识检索。通过生成13.5万张治理后的经验卡片,MemGovern在SWE-bench Verified基准上的问题解决率显著提升4.65%。作为即插即用方案,MemGovern为构建智能体友好型记忆基础设施提供了解决方案。
English
While autonomous software engineering (SWE) agents are reshaping programming paradigms, they currently suffer from a "closed-world" limitation: they attempt to fix bugs from scratch or solely using local context, ignoring the immense historical human experience available on platforms like GitHub. Accessing this open-world experience is hindered by the unstructured and fragmented nature of real-world issue-tracking data. In this paper, we introduce MemGovern, a framework designed to govern and transform raw GitHub data into actionable experiential memory for agents. MemGovern employs experience governance to convert human experience into agent-friendly experience cards and introduces an agentic experience search strategy that enables logic-driven retrieval of human expertise. By producing 135K governed experience cards, MemGovern achieves a significant performance boost, improving resolution rates on the SWE-bench Verified by 4.65%. As a plug-in approach, MemGovern provides a solution for agent-friendly memory infrastructure.
PDF591January 15, 2026