Typed-RAG:面向非事實性問答的類型感知多維度分解
Typed-RAG: Type-aware Multi-Aspect Decomposition for Non-Factoid Question Answering
March 20, 2025
作者: DongGeon Lee, Ahjeong Park, Hyeri Lee, Hyeonseo Nam, Yunho Maeng
cs.AI
摘要
非事實性問答(NFQA)因其開放性、多樣化的意圖以及需要多維度推理而面臨重大挑戰,這使得包括檢索增強生成(RAG)在內的傳統事實性問答方法顯得不足。與事實性問題不同,非事實性問題(NFQs)缺乏明確答案,需要從多個來源綜合信息,涵蓋不同的推理維度。為解決這些限制,我們在RAG範式中引入了Typed-RAG,這是一個類型感知的多維度分解框架,專門用於NFQA。Typed-RAG將NFQs分類為不同的類型——如辯論、經驗和比較——並應用基於維度的分解來優化檢索和生成策略。通過將多維度的NFQs分解為單一維度的子查詢並聚合結果,Typed-RAG生成更具信息量和上下文相關性的回答。為了評估Typed-RAG,我們引入了Wiki-NFQA,這是一個涵蓋多種NFQ類型的基準數據集。實驗結果表明,Typed-RAG優於基線方法,從而凸顯了類型感知分解在NFQA中有效檢索和生成的重要性。我們的代碼和數據集可在https://github.com/TeamNLP/Typed-RAG{https://github.com/TeamNLP/Typed-RAG}獲取。
English
Non-factoid question-answering (NFQA) poses a significant challenge due to
its open-ended nature, diverse intents, and the need for multi-aspect
reasoning, which renders conventional factoid QA approaches, including
retrieval-augmented generation (RAG), inadequate. Unlike factoid questions,
non-factoid questions (NFQs) lack definitive answers and require synthesizing
information from multiple sources across various reasoning dimensions. To
address these limitations, we introduce Typed-RAG, a type-aware multi-aspect
decomposition framework within the RAG paradigm for NFQA. Typed-RAG classifies
NFQs into distinct types -- such as debate, experience, and comparison -- and
applies aspect-based decomposition to refine retrieval and generation
strategies. By decomposing multi-aspect NFQs into single-aspect sub-queries and
aggregating the results, Typed-RAG generates more informative and contextually
relevant responses. To evaluate Typed-RAG, we introduce Wiki-NFQA, a benchmark
dataset covering diverse NFQ types. Experimental results demonstrate that
Typed-RAG outperforms baselines, thereby highlighting the importance of
type-aware decomposition for effective retrieval and generation in NFQA. Our
code and dataset are available at
https://github.com/TeamNLP/Typed-RAG{https://github.com/TeamNLP/Typed-RAG}.Summary
AI-Generated Summary