Typed-RAG:面向非事实性问答的类型感知多维度分解方法
Typed-RAG: Type-aware Multi-Aspect Decomposition for Non-Factoid Question Answering
March 20, 2025
作者: DongGeon Lee, Ahjeong Park, Hyeri Lee, Hyeonseo Nam, Yunho Maeng
cs.AI
摘要
非事实类问答(NFQA)因其开放性、意图多样性及多维度推理需求而面临重大挑战,这使得包括检索增强生成(RAG)在内的传统事实类问答方法显得力不从心。与事实类问题不同,非事实类问题(NFQs)缺乏明确答案,需综合来自不同来源、跨越多种推理维度的信息。为应对这些局限,我们提出了Typed-RAG,一种在RAG框架内基于类型识别的多维度分解方法,专为NFQA设计。Typed-RAG将NFQs分类为辩论、经验、比较等不同类型,并采用基于维度的分解策略来优化检索与生成过程。通过将多维度NFQs分解为单一维度的子查询并整合结果,Typed-RAG能够生成信息更丰富、上下文更相关的回答。为评估Typed-RAG,我们引入了Wiki-NFQA,一个涵盖多种NFQ类型的基准数据集。实验结果表明,Typed-RAG在性能上超越基线模型,凸显了类型识别分解在NFQA中有效检索与生成的重要性。我们的代码与数据集已公开于https://github.com/TeamNLP/Typed-RAG。
English
Non-factoid question-answering (NFQA) poses a significant challenge due to
its open-ended nature, diverse intents, and the need for multi-aspect
reasoning, which renders conventional factoid QA approaches, including
retrieval-augmented generation (RAG), inadequate. Unlike factoid questions,
non-factoid questions (NFQs) lack definitive answers and require synthesizing
information from multiple sources across various reasoning dimensions. To
address these limitations, we introduce Typed-RAG, a type-aware multi-aspect
decomposition framework within the RAG paradigm for NFQA. Typed-RAG classifies
NFQs into distinct types -- such as debate, experience, and comparison -- and
applies aspect-based decomposition to refine retrieval and generation
strategies. By decomposing multi-aspect NFQs into single-aspect sub-queries and
aggregating the results, Typed-RAG generates more informative and contextually
relevant responses. To evaluate Typed-RAG, we introduce Wiki-NFQA, a benchmark
dataset covering diverse NFQ types. Experimental results demonstrate that
Typed-RAG outperforms baselines, thereby highlighting the importance of
type-aware decomposition for effective retrieval and generation in NFQA. Our
code and dataset are available at
https://github.com/TeamNLP/Typed-RAG{https://github.com/TeamNLP/Typed-RAG}.Summary
AI-Generated Summary