只需教科書
Textbooks Are All You Need
June 20, 2023
作者: Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del Giorno, Sivakanth Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli Saarikivi, Adil Salim, Shital Shah, Harkirat Singh Behl, Xin Wang, Sébastien Bubeck, Ronen Eldan, Adam Tauman Kalai, Yin Tat Lee, Yuanzhi Li
cs.AI
摘要
我們介紹了 phi-1,一個針對程式碼的新型大型語言模型,其尺寸明顯比競爭模型小:phi-1 是基於 Transformer 的模型,具有 13 億個參數,在 8 台 A100 上訓練了 4 天,使用了從網路中選取的「教科書質量」數據(60 億標記)以及與 GPT-3.5(10 億標記)合成生成的教科書和練習題。儘管規模較小,phi-1 在 HumanEval 上達到了 50.6% 的 pass@1 準確率,並在 MBPP 上達到了 55.5%。與 phi-1-base 相比,即我們在編程練習數據集上進行微調之前的模型,以及 phi-1-small,一個具有 3.5 億參數的較小模型,使用與 phi-1 相同的流程訓練,仍然在 HumanEval 上達到了 45% 的準確率,phi-1 顯示出了一些令人驚訝的新特性。
English
We introduce phi-1, a new large language model for code, with significantly
smaller size than competing models: phi-1 is a Transformer-based model with
1.3B parameters, trained for 4 days on 8 A100s, using a selection of ``textbook
quality" data from the web (6B tokens) and synthetically generated textbooks
and exercises with GPT-3.5 (1B tokens). Despite this small scale, phi-1 attains
pass@1 accuracy 50.6% on HumanEval and 55.5% on MBPP. It also displays
surprising emergent properties compared to phi-1-base, our model before our
finetuning stage on a dataset of coding exercises, and phi-1-small, a smaller
model with 350M parameters trained with the same pipeline as phi-1 that still
achieves 45% on HumanEval.