ChatPaper.aiChatPaper

教科书就是你所需要的

Textbooks Are All You Need

June 20, 2023
作者: Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del Giorno, Sivakanth Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli Saarikivi, Adil Salim, Shital Shah, Harkirat Singh Behl, Xin Wang, Sébastien Bubeck, Ronen Eldan, Adam Tauman Kalai, Yin Tat Lee, Yuanzhi Li
cs.AI

摘要

我们引入 phi-1,这是一个用于代码的新型大型语言模型,其尺寸明显比竞争模型小:phi-1 是一个基于 Transformer 的模型,具有 13 亿参数,在 8 个 A100 上训练了 4 天,使用了来自网络的“教科书质量”数据(60 亿标记)和使用 GPT-3.5 合成生成的教科书和练习(10 亿标记)。尽管规模较小,phi-1 在 HumanEval 上的 pass@1 准确率达到 50.6%,在 MBPP 上达到 55.5%。与 phi-1-base 相比,即我们在编程练习数据集上进行微调之前的模型,以及 phi-1-small,一个具有 3.5 亿参数的较小模型,使用与 phi-1 相同的流程训练,仍然在 HumanEval 上达到 45% 的准确率,phi-1 还展现出令人惊讶的新颖特性。
English
We introduce phi-1, a new large language model for code, with significantly smaller size than competing models: phi-1 is a Transformer-based model with 1.3B parameters, trained for 4 days on 8 A100s, using a selection of ``textbook quality" data from the web (6B tokens) and synthetically generated textbooks and exercises with GPT-3.5 (1B tokens). Despite this small scale, phi-1 attains pass@1 accuracy 50.6% on HumanEval and 55.5% on MBPP. It also displays surprising emergent properties compared to phi-1-base, our model before our finetuning stage on a dataset of coding exercises, and phi-1-small, a smaller model with 350M parameters trained with the same pipeline as phi-1 that still achieves 45% on HumanEval.
PDF14514December 15, 2024