HiKE:韓英語碼轉換語音識別的層次化評估框架
HiKE: Hierarchical Evaluation Framework for Korean-English Code-Switching Speech Recognition
September 29, 2025
作者: Gio Paik, Yongbeom Kim, Soungmin Lee, Sangmin Ahn, Chanwoo Kim
cs.AI
摘要
儘管多語言自動語音識別(ASR)技術已取得進展,但語碼轉換(CS)——即日常對話中常見的語言混合現象——仍是一個嚴重未被充分探索的挑戰。本文介紹了HiKE:分層韓英語碼轉換基準,這是首個全球可訪問的韓英CS評估框架,旨在為多語言ASR模型提供精確的評估手段,並推動該領域的研究。所提出的框架不僅包含跨多種主題的高質量、自然CS數據,還提供了細緻的外來詞標籤及分層CS級別標籤方案(詞、短語和句子),這些共同促成了對模型處理各級別語碼轉換能力的系統性評估。通過對多種多語言ASR模型的評估及微調實驗,本文表明,雖然大多數多語言ASR模型最初在CS-ASR上表現不佳,但通過使用CS數據進行微調,可顯著提升此能力。HiKE將在https://github.com/ThetaOne-AI/HiKE上公開提供。
English
Despite advances in multilingual automatic speech recognition (ASR),
code-switching (CS), the mixing of languages within an utterance common in
daily speech, remains a severely underexplored challenge. In this paper, we
introduce HiKE: the Hierarchical Korean-English code-switching benchmark, the
first globally accessible evaluation framework for Korean-English CS, aiming to
provide a means for the precise evaluation of multilingual ASR models and to
foster research in the field. The proposed framework not only consists of
high-quality, natural CS data across various topics, but also provides
meticulous loanword labels and a hierarchical CS-level labeling scheme (word,
phrase, and sentence) that together enable a systematic evaluation of a model's
ability to handle each distinct level of code-switching. Through evaluations of
diverse multilingual ASR models and fine-tuning experiments, this paper
demonstrates that while most multilingual ASR models initially struggle with
CS-ASR, this capability can be enabled through fine-tuning with CS data. HiKE
will be available at https://github.com/ThetaOne-AI/HiKE.